By a ball-covering B of a Banach space X, we mean that it is a collection of open balls off the origin whose union contains the sphere of the unit ball of X. The space X is said to have a ball-covering property, if it...By a ball-covering B of a Banach space X, we mean that it is a collection of open balls off the origin whose union contains the sphere of the unit ball of X. The space X is said to have a ball-covering property, if it admits a ball-covering consisting of countably many balls. This paper, by constructing the equivalent norms on l~∞, shows that ball-covering property is not invariant under isomorphic mappings, though it is preserved under such mappings if X is a Gateaux differentiability space; presents that this property of X is not heritable by its closed subspaces; and the property is also not preserved under quotient mappings.展开更多
基金Supported by the National Natural Science Foundation of China (Grant No. 10471114)
文摘By a ball-covering B of a Banach space X, we mean that it is a collection of open balls off the origin whose union contains the sphere of the unit ball of X. The space X is said to have a ball-covering property, if it admits a ball-covering consisting of countably many balls. This paper, by constructing the equivalent norms on l~∞, shows that ball-covering property is not invariant under isomorphic mappings, though it is preserved under such mappings if X is a Gateaux differentiability space; presents that this property of X is not heritable by its closed subspaces; and the property is also not preserved under quotient mappings.