期刊文献+
共找到35篇文章
< 1 2 >
每页显示 20 50 100
Two-photon polymerization-based 4D printing and its applications
1
作者 Bingcong Jian Honggeng Li +3 位作者 Xiangnan He Rong Wang Hui Ying Yang Qi Ge 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第1期1-25,共25页
Two-photon polymerization(TPP)is a cutting-edge micro/nanoscale three-dimensional(3D)printing technology based on the principle of two-photon absorption.TPP surpasses the diffraction limit in achieving feature sizes a... Two-photon polymerization(TPP)is a cutting-edge micro/nanoscale three-dimensional(3D)printing technology based on the principle of two-photon absorption.TPP surpasses the diffraction limit in achieving feature sizes and excels in fabricating intricate 3D micro/nanostructures with exceptional resolution.The concept of 4D entails the fabrication of structures utilizing smart materials capable of undergoing shape,property,or functional changes in response to external stimuli over time.The integration of TPP and 4D printing introduces the possibility of producing responsive structures with micro/nanoscale accuracy,thereby enhancing the capabilities and potential applications of both technologies.This paper comprehensively reviews TPP-based 4D printing technology and its diverse applications.First,the working principles of TPP and its recent advancements are introduced.Second,the optional4D printing materials suitable for fabrication with TPP are discussed.Finally,this review paper highlights several noteworthy applications of TPP-based 4D printing,including domains such as biomedical microrobots,bioinspired microactuators,autonomous mobile microrobots,transformable devices and robots,as well as anti-counterfeiting microdevices.In conclusion,this paper provides valuable insights into the current status and future prospects of TPP-based4D printing technology,thereby serving as a guide for researchers and practitioners. 展开更多
关键词 two-photonpolymerization 4d printing nano/micro fabrication MICROROBOT
下载PDF
High Colloidal Stable Carbon Dots Armored Liquid Metal Nano-Droplets for Versatile 3D/4D Printing Through Digital Light Processing(DLP)
2
作者 Linan Wang Junle Zhang +8 位作者 Xi Zhang Ge Shi Yanjie He Zhe Cui Xiaomeng Zhang Peng Fu Minying Liu Xiaoguang Qiao Xinchang Pang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第3期432-438,共7页
Liquid metal(LM)and liquid metal alloys(LMs)possess unique physicochemical features,which have become emerging and functionalized materials that are attractive applicants in various fields.Herein,uniform LM nanodrople... Liquid metal(LM)and liquid metal alloys(LMs)possess unique physicochemical features,which have become emerging and functionalized materials that are attractive applicants in various fields.Herein,uniform LM nanodroplets armored by carbon dots(LMD@CDs)were prepared and exhibited high colloidal stability in various solvents,as well as water.After optimization,LMD@CDs can be applied as functional additives for the 3D/4D printing of hydrogel and cross-linked resin through digital light processing(DLP).The light absorption of LMD@CDs not only improved the printing accuracy,but also led to the cross-linking density differential during the post-curing process.Base on the cross-linking density differential of soft hydrogel and photothermal performance of the LM,the 3D printed objects can exhibit stimulus responses to both water and laser irradiation.Additionally,the CDs shell and LM core of LMD@CDs provide the printed objects interesting photoluminescence and electric conductivity capabilities,respectively.We deduce this versatile 3D/4D printing system would provide a new platform for the preparation of multi-functional and stimuli-responsive advance materials. 展开更多
关键词 4d printing carbon dots liquid metal nanodroplets
下载PDF
4D printing: interdisciplinary integration of smart materials, structural design,and new functionality 被引量:5
3
作者 Zhiyang Lyu Jinlan Wang Yunfei Chen 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第3期342-361,共20页
Four-dimensional printing allows for the transformation capabilities of 3D-printed architectures over time,altering their shape,properties,or function when exposed to external stimuli.This interdisciplinary technology... Four-dimensional printing allows for the transformation capabilities of 3D-printed architectures over time,altering their shape,properties,or function when exposed to external stimuli.This interdisciplinary technology endows the 3D architectures with unique functionalities,which has generated excitement in diverse research fields,such as soft robotics,biomimetics,biomedical devices,and sensors.Understanding the selection of the material,architectural designs,and employed stimuli is crucial to unlocking the potential of smart customization with 4D printing.This review summarizes recent significant developments in 4D printing and establishes links between smart materials,3D printing techniques,programmable structures,diversiform stimulus,and new functionalities for multidisciplinary applications.We start by introducing the advanced features of 4D printing and the key technological roadmap for its implementation.We then place considerable emphasis on printable smart materials and structural designs,as well as general approaches to designing programmable structures.We also review stimulus designs in smart materials and their associated stimulus-responsive mechanisms.Finally,we discuss new functionalities of 4D printing for potential applications and further development directions. 展开更多
关键词 4d printing 3D printing smart materials programmable structure STIMULUS
下载PDF
Design and Research of Form Controlled Planar Folding Mechanism based on 4D Printing Technology
4
作者 Wencai Zhang Zhenghao Ge Duanling Li 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第4期281-293,共13页
The use of non-smart materials in structural components and kinematic pairs allows for flexible assembly in practical applications and is promising for aerospace applications.However,this approach can result in a comp... The use of non-smart materials in structural components and kinematic pairs allows for flexible assembly in practical applications and is promising for aerospace applications.However,this approach can result in a complex structure and excessive kinematic pairs,which limits its potential applications due to the difficulty in controlling and actuating the mechanism.While smart materials have been integrated into certain mechanisms,such integration is generally considered a unique design for specific cases and lacks universality.Therefore,organically combining universal mechanism design with smart materials and 4D printing technology,innovating mechanism types,and systematically exploring the interplay between structural design and morphing control remains an open research area.In this work,a novel form-controlled planar folding mechanism is proposed,which seamlessly integrates the control and actuation system with the structural components and kinematic pairs based on the combination of universal mechanism design with smart materials and 4D printing technology,while achieving self-controlled dimensional ratio adjustment under a predetermined thermal excitation.The design characteristics of the mechanism are analyzed,and the required structural design parameters for the preprogrammed design are derived using a kinematic model.Using smart materials and 4D printing technology,folding programs based on material properties and control programs based on manufacturing parameters are encoded into the form-controlled rod to achieve the preprogrammed design of the mechanism.Finally,two sets of prototype mechanisms are printed to validate the feasibility of the design,the effectiveness of the morphing control programs,and the accuracy of the theoretical analysis.This mechanism not only promotes innovation in mechanism design methods but also shows exceptional promise in satellite calibration devices and spacecraft walking systems. 展开更多
关键词 Form-controlled mechanism Self-folding Smart materials 4d printing Morphing control
下载PDF
Preliminary Investigation of the Reversible 4D Printing of a Dual-Layer Component 被引量:8
5
作者 Amelia Yilin Lee Jia An +1 位作者 Chee Kai Chua Yi Zhang 《Engineering》 SCIE EI 2019年第6期1159-1170,共12页
The rapid development of additive manufacturing and advances in shape memory materials have fueled the progress of four-dimensional (4D) printing. With increasing improvements in design, reversible 4D printing or two-... The rapid development of additive manufacturing and advances in shape memory materials have fueled the progress of four-dimensional (4D) printing. With increasing improvements in design, reversible 4D printing or two-way 4D printing has been proven to be feasible. This technology will fully eliminate the need for human interference, as the programming is completely driven by external stimuli, which allows 4D-printed parts to be actuated in multiple cycles. This study proposes a new reversible 4D print- ing actuation method. The swelling of an elastomer and heat are used in the programming stage, and heat is used in the recovery stage. The main focus of this study is on the self-actuated programming step. To attain control over the bending, a simple predictive model has been developed to study the degree of cur- vature. The parameters, temperature, and elastomer thickness have also been studied in order to gain a better understanding of how well the model predicts the curvature. This understanding of the curvature will provide a great degree of control over the reversible 4D-printed structure. 展开更多
关键词 4d printing Additive manufacturing Shape memory polymer Reversible 4d printing Two-way 4d printing Elastomer swelling
下载PDF
Two-Way 4D Printing: A Review on the Reversibility of 3D-Printed Shape Memory Materials 被引量:23
6
作者 Amelia Yilin Lee Jia An Chee Kai Chua 《Engineering》 SCIE EI 2017年第5期663-674,共12页
The rapid development of additive manufacturing and advances in shape memory materials have fueled the progress of four-dimensional (4D) printing. With the right external stimulus, the need for human interaction, se... The rapid development of additive manufacturing and advances in shape memory materials have fueled the progress of four-dimensional (4D) printing. With the right external stimulus, the need for human interaction, sensors, and batteries will be eliminated, and by using additive manufacturing, more complex devices and parts can be produced. With the current understanding of shape memory mechanisms and with improved design for additive manufacturing, reversibility in 4D printing has recently been proven to be feasible. Conventional one-way 4D printing requires human interaction in the programming (or shapesetting) phase, but reversible 4D printing, or two-way 4D printing, will fully eliminate the need for human interference, as the programming stage is replaced with another stimulus. This allows reversible 4D printed parts to be fully dependent on external stimuli; parts can also be potentially reused after every recovery, or even used in continuous cycles-an aspect that carries industrial appeal. This paper presents a review on the mechanisms of shape memory materials that have led to 4D printing, current findings regarding 4D printing in alloys and polymers, and their respective limitations. The reversibility of shape memory materials and their feasibility to be fabricated using three-dimensional (3D) printing are summarized and critically analyzed. For reversible 4D printing, the methods of 3D printing, mechanisms used for actuation, and strategies to achieve reversibility are also highlighted. Finally, prospective future research directions in reversible 4D printing are suggested. 展开更多
关键词 4d printing Additive manufacturing Shape memory material Smart materials Shape memory alloy Shape memory polymer
下载PDF
4D printing of PLA/PCL shape memory composites with controllable sequential deformation 被引量:4
7
作者 Suqian Ma Zeyu Jiang +5 位作者 Meng Wang Lan Zhang Yunhong Liang Zhihui Zhang Lei Ren Luquan Ren 《Bio-Design and Manufacturing》 SCIE EI CSCD 2021年第4期867-878,共12页
Shape memory polymers(SMPs)are a promising class of materials for biomedical applications due to their favorable mechanical properties,fast response,and good biocompatibility.However,it is difficult to achieve control... Shape memory polymers(SMPs)are a promising class of materials for biomedical applications due to their favorable mechanical properties,fast response,and good biocompatibility.However,it is difficult to achieve controllable sequential shape change for most SMPs due to their high deformation temperature and the simplex deformation process.Herein,shape memory composites based on polylactic acid(PLA)matrix and semi-crystalline linear polymer polycaprolactone(PCL)are fabricated using 4D printing technology.Compared with pure PLA,with the rise of PCL content,the 4D-printed PLA/PCL composites show decreased glass transition temperature(Tg)from 67.2 to 55.2°C.Through the precise control of the deformation condition,controllable sequential deformation with an outstanding shape memory effect can be achieved for the PLA/PCL shape memory composites.The response time of shape recovery is less than 1.2 s,and the shape fixation/recov-ery rates are above 92%.In order to simulate sequential petal opening and sequential drug releasing effects,a double-layer bionic flower and a drug release device,respectively,are presented by assembling PLA/PCL samples with different PLA/PCL ratios.The results indicate the potential applications of 4D-printed PLA/PCL composites in the field of bio-inspired robotics and biomedical devices. 展开更多
关键词 4d printing Shape memory polymer TEMPERATURE-RESPONSIVE Polylactic acid POLYCAPROLACTONE
下载PDF
4D printing of core-shell hydrogel capsules for smart controlled drug release 被引量:4
8
作者 Shuo Zu Zhihui Zhang +5 位作者 Qingping Liu Zhenguo Wang Zhengyi Song Yunting Guo Yuanzhu Xin Shuang Zhang 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2022年第2期294-304,共11页
Personalized drugs,as well as disease-specific and condition-dependent drug release,have been highly desired in drug delivery systems for effective and safe therapies.Four-dimensional(4 D)printing,as a newly emerging ... Personalized drugs,as well as disease-specific and condition-dependent drug release,have been highly desired in drug delivery systems for effective and safe therapies.Four-dimensional(4 D)printing,as a newly emerging technique to develop drug capsules,displays unique advantages that can autonomously control drug release according to the actual physiological circumstances.Herein,core-shell structured hydrogel capsules were developed using a multimaterial extrusion-based 4 D printing method,which consists of a model drug as the core and UV cross-linked poly(N-isopropylacrylamide)(PNIPAM)hydrogel as the shell.Owing to the lower critical solution temperature(LCST)-induced shrinking/swelling properties,the prepared PNIPAM hydrogel capsules showed temperature-responsive drug release along with the topography changes in the cross-linked PNIPAM network.The in vitro drug release test confirmed that the PNIPAM hydrogel capsules can autonomously control their drug release behaviors according to changes in ambient temperature.Moreover,the increased shell thickness of these capsules causes an obvious reduction in drug release rate,distinctly indicating that the drug release behavior can be well adjusted by setting the shell thickness of the capsules.The proposed 4 D printing strategy pioneers the paradigm of smart drug release by showing great potential in the smart controlled release of drugs and macromolecular active agents. 展开更多
关键词 4d printing Hydrogel capsules Controlled release Poly(N-isopropylacrylamide)(PNIPAM) Personalized drugs
下载PDF
From oral formulations to drug-eluting implants:using 3D and 4D printing to develop drug delivery systems and personalized medicine 被引量:2
9
作者 Niels G.A.Willemen Margaretha A.J.Morsink +4 位作者 Devin Veerman Classius F.da Silva Juliana C.Cardoso Eliana B.Souto Patrícia Severino 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2022年第1期85-106,共22页
Since the start of the Precision Medicine Initiative by the United States of America in 2015,interest in personalized medicine has grown extensively.In short,personalized medicine is a term that describes medical trea... Since the start of the Precision Medicine Initiative by the United States of America in 2015,interest in personalized medicine has grown extensively.In short,personalized medicine is a term that describes medical treatment that is tuned to the individual.One possible way to realize personalized medicine is 3D printing.When using materials that can be tuned upon stimulation,4D printing is established.In recent years,many studies have been exploring a new field that combines 3D and 4D printing with therapeutics.This has resulted in many concepts of pharmaceutical devices and formulations that can be printed and,possibly,tailored to an individual.Moreover,the first 3D printed drug,Spritam®,has already found its way to the clinic.This review gives an overview of various 3D and 4D printing techniques and their applications in the pharmaceutical field as drug delivery systems and personalized medicine. 展开更多
关键词 Drug delivery systems 3D/4d printing Drug-eluting implants MICRONEEDLES Oral formulations
下载PDF
4D printing of soft orthoses for tremor suppression 被引量:1
10
作者 Moslem Mohammadi Ali Zolfagharian +2 位作者 Mahdi Bodaghi Yong Xiang Abbas Z.Kouzani 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2022年第4期786-807,共22页
Tremor is an involuntary and oscillatory movement disorder that makes daily activities difficult for affected patients. Hand tremor-suppression orthoses are noninvasive, wearable devices designed to mitigate tremors. ... Tremor is an involuntary and oscillatory movement disorder that makes daily activities difficult for affected patients. Hand tremor-suppression orthoses are noninvasive, wearable devices designed to mitigate tremors. Various studies have shown that these devices are effective, economical, and safe;however, they have drawbacks such as large weight, awkward shape, and rigid parts. This study investigates different types of tremor-suppression orthoses and discusses their efficiency, mechanism,benefits, and disadvantages. First, various orthoses(with passive, semi-active, and active mechanisms) are described in detail.Next, we look at how additive manufacturing(AM) has progressed recently in making sensors and actuators for application in tremor orthoses. Then, the materials used in AM are further analyzed. It is found that traditional manufacturing problems can be solved with the help of AM techniques, like making orthoses that are affordable, lighter, and more customizable. Another concept being discussed is using smart materials and AM methods, such as four-dimensional(4D) printing, to make orthoses that are more comfortable and efficient. 展开更多
关键词 Tremor suppression Parkinson’s disease Essential tremor Additive manufacturing 4d printing
下载PDF
Origami-Based Design for 4D Printing of 3D Support-Free Hollow Structures
11
作者 Bingcong Jian Frederic Demoly +3 位作者 Yicha Zhang H.Jerry Qi Jean-Claude Andre Samuel Gomes 《Engineering》 SCIE EI CAS 2022年第5期70-82,共13页
The integration of additive manufacturing(AM)in design and engineering has prompted a wide spectrum of research efforts,involving topologically optimized solid/lattice structures,multimaterial structures,bioinspired o... The integration of additive manufacturing(AM)in design and engineering has prompted a wide spectrum of research efforts,involving topologically optimized solid/lattice structures,multimaterial structures,bioinspired organic structures,and multiscale structures,to name a few.However,except for obvious cases,very little attention has been given to the design and printing of more complex three-dimensional(3D)hollow structures or folded/creased structures.One of the main reasons is that such complex open or closed 3D cavities and regular/freeform folds generally lead to printing difficulties from support-structure-related issues.To address this barrier,this paper aims to investigate four-dimensional(4D)printing as well as origami-based design as an original research direction to design and build 3D support-free hollow structures.This work consists of describing the rough 3D hollow structures in terms of two-dimensional(2D)printed origami precursor layouts without any support structure.Such origami-based definitions are then embodied with folding functions that can be actuated and fulfilled by 3D printed smart materials.The desired 3D shape is then built once an external stimulus is applied to the active materials,therefore ensuring the transformation of the 2D origami layout to 3D structures.To demonstrate the relevance of the proposal,some illustrative cases are introduced. 展开更多
关键词 Origami-based design 4d printing Smart material Hollow 3D structures Additive manufacturing
下载PDF
Bioinspired 4D Printing Shape-Memory Polyurethane Rhinoplasty Prosthesis for Dynamic Aesthetic Adjustment
12
作者 Jiaqi Liu Guiwei Li +5 位作者 He Liu Jincheng Wang Hui Wang Xue Gao Qingping Liu Chenyu Wang 《Journal of Bionic Engineering》 SCIE EI CSCD 2024年第3期1397-1411,共15页
The disparity between the postoperative outcomes of rhinoplasty and the expected results frequently necessitates secondary or multiple surgeries as a compensatory measure,greatly diminishing patient satisfaction.Howev... The disparity between the postoperative outcomes of rhinoplasty and the expected results frequently necessitates secondary or multiple surgeries as a compensatory measure,greatly diminishing patient satisfaction.However,there is renewed optimism for addressing these challenges through the innovative realm of Four-Dimensional(4D)printing.This groundbreaking technology enables three-dimensional objects with shape-memory properties to undergo predictable transformations under specific external stimuli.Consequently,implants crafted using 4D printing offer significant potential for dynamic adjustments.Inspired by worms in our research,we harnessed 4D printing to fabricate a Shape-Memory Polyurethane(SMPU)for use as a nasal augmentation prosthesis.The choice of SMPU was guided by its Glass Transition Temperature(Tg),which falls within the acceptable temperature range for the human body.This attribute allowed for temperature-responsive intraoperative self-deformation and postoperative remodeling.Our chosen animal model for experimentation was rabbits.Taking into account the anatomical structure of the rabbit nose,we designed and produced nasal augmentation prostheses with superior biocompatibility.These prostheses were then surgically implanted in a minimally invasive manner into the rabbit noses.Remarkably,they exhibited successful temperature-controlled in-surgery self-deformation according to the predetermined shape and non-invasive remodeling within a mere 9 days post-surgery.Subsequent histological evaluations confirmed the practical viability of these prostheses in a living organism.Our research findings posit that worm-inspired 4D-printed SMPU nasal prostheses hold significant promise for achieving dynamic aesthetic adjustments. 展开更多
关键词 4d printing Shape memory polyurethane RHINOPLASTY Self-deformation Dynamic aesthetic adjustment
原文传递
Carbon fiber reinforced liquid crystalline elastomer composites:a dual exploration in strength augmentation and transformation flexibility through 4D printing
13
作者 Yuliang Xia Tong Mu +1 位作者 Yanju Liu Jinsong Leng 《International Journal of Smart and Nano Materials》 SCIE EI 2024年第2期312-329,共18页
Liquid Crystal Elastomers(LCEs)are renowned for their reversible deformation capabilities.Yet,enhancing their mechanical strength while retaining such flexibility has posed a considerable challenge.To overcome this,we... Liquid Crystal Elastomers(LCEs)are renowned for their reversible deformation capabilities.Yet,enhancing their mechanical strength while retaining such flexibility has posed a considerable challenge.To overcome this,we utilized 4D printing to develop an innovative composite of LCE with carbon fiber fabric(LCEC).This approach has notably increased the tensile strength of LCE by eightfold,all the while maintaining its exceptional capacity for reversible deforma-tion.By adjusting the alignment angle between carbon fiber and the LCE printing direction from 0°to 90°,the LCEC demonstrates an array of new deformation patterns,including bending,twisting,wrapping,and S-shaped transformations,which are distinct from pure LCE materials.Our study unveils that LCE composites exhibit deformation processes markedly different from their pure material counterparts,with the ability of pure LCE to sustain tensile strains exceeding 1900%.These findings,previously undocumented and unexplored,represent a substantial contribution to the field of smart materials.Employing finite element analysis,we explored the carbon fiber and LcE matrix dynamics,revealing bending mechanics in LCECs.This combined experimental and simulation approach yields crucial insights for crafting durable,high-strength LCECs with diverse deformational properties,advancing smart material technology. 展开更多
关键词 Liquid crystal elastomer composites 4d printing Smart materials
原文传递
Water-responsive 4D printing based on self-assembly of hydrophobic protein “Zein” for the control of degradation rate and drug release
14
作者 Yubei Zhang Ali Raza +6 位作者 Ya-Qi Xue Ganggang Yang Uzma Hayat Jingwen Yu Chang Liu Hua-Jie Wang Jin-Ye Wang 《Bioactive Materials》 SCIE CSCD 2023年第5期343-352,共10页
Four-dimensional(4D)printing is a promising technology that provides solutions for compelling needs in various fields.Most of the reported 4D printed systems are based on the temporal shape transformation of printed s... Four-dimensional(4D)printing is a promising technology that provides solutions for compelling needs in various fields.Most of the reported 4D printed systems are based on the temporal shape transformation of printed subjects.Induction of temporal heterogenicity in functions in addition to shape may extend the scope of 4D printing.Herein,we report a 4D printing approach using plant protein(zein)gel inspired by the amyloid fibrils formation mechanism.The printing of zein gel in a specialized layered-Carbopol supporting bath with different water concentrations in an ethanol-water mixture modulates hydrophobic and hydrogen bonding that causes temporal changes in functions.The part of the construct printed in a supporting bath with higher water content exhibits higher drug loading,faster drug release and degradation than those printed in the supporting bath with lower water content.Tri-segment conduit and butterfly-shaped construct with two asymmetrical wings are printed using this system to evaluate biomedical function as nerve conduit and drug delivery system.4D printed conduits are also effective as a drug-eluting urethral stent in the porcine model.Overall,this study extends the concept of 4D printing beyond shape transformation and presents an approach of fabricating specialized baths for 4D printing that can also be extended to other materials to obtain 4D printed medical devices with translational potential. 展开更多
关键词 Zein gels Water-driven 4d printing Protein self-assembly Tunable degradation Controlled drug release
原文传递
Pioneering the direct large-scale laser printing of flexible“graphenic silicon”self-standing thin films as ultrahigh-performance lithium-ion battery anodes
15
作者 Avinash Kothuru Adam Cohen +2 位作者 Gil Daffan Yonatan Juhl Fernando Patolsky 《Carbon Energy》 SCIE EI CAS CSCD 2024年第7期26-40,共15页
Recent technological advancements,such as portable electronics and electric vehicles,have created a pressing need for more efficient energy storage solutions.Lithium-ion batteries(LIBs)have been the preferred choice f... Recent technological advancements,such as portable electronics and electric vehicles,have created a pressing need for more efficient energy storage solutions.Lithium-ion batteries(LIBs)have been the preferred choice for these applications,with graphite being the standard anode material due to its stability.However,graphite falls short of meeting the growing demand for higher energy density,possessing a theoretical capacity that lags behind.To address this,researchers are actively seeking alternative materials to replace graphite in commercial batteries.One promising avenue involves lithiumalloying materials like silicon and phosphorus,which offer high theoretical capacities.Carbon-silicon composites have emerged as a viable option,showing improved capacity and performance over traditional graphite or pure silicon anodes.Yet,the existing methods for synthesizing these composites remain complex,energy-intensive,and costly,preventing widespread adoption.A groundbreaking approach is presented here:the use of a laser writing strategy to rapidly transform common organic carbon precursors and silicon blends into efficient“graphenic silicon”composite thin films.These films exhibit exceptional structural and energy storage properties.The resulting three-dimensional porous composite anodes showcase impressive attributes,including ultrahigh silicon content,remarkable cyclic stability(over 4500 cycles with∼40%retention),rapid charging rates(up to 10 A g^(-1)),substantial areal capacity(>5.1 mAh cm^(-2)),and excellent gravimetric capacity(>2400 mAh g^(-1) at 0.2 A g^(-1)).This strategy marks a significant step toward the scalable production of high-performance LIB materials.Leveraging widely available,cost-effective precursors,the laser-printed“graphenic silicon”composites demonstrate unparalleled performance,potentially streamlining anode production while maintaining exceptional capabilities.This innovation not only paves the way for advanced LIBs but also sets a precedent for transforming various materials into high-performing electrodes,promising reduced complexity and cost in battery production. 展开更多
关键词 4d printing energy storage fast-charging laser-induced graphene LITHIUM-ION silicon carbon composite anodes
下载PDF
Topology-Optimized 4D Printing of a Soft Actuator 被引量:7
16
作者 Ali Zolfagharian Martin Denk +2 位作者 Mahdi Bodaghi Abbas Z.Kouzani Akif Kaynak 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2020年第3期418-430,共13页
Soft robots and actuators are emerging devices providing more capabilities in the field of robotics.More flexibility and compliance attributing to soft functional materials used in the fabrication of these devices mak... Soft robots and actuators are emerging devices providing more capabilities in the field of robotics.More flexibility and compliance attributing to soft functional materials used in the fabrication of these devices make them ideal for delivering delicate tasks in fragile environments,such as food and biomedical sectors.Yet,the intuitive nonlinearity of soft functional materials and their anisotropic actuation in compliant mechanisms constitute an existent challenge in improving their performance.Topology optimization(TO)along with four-dimensional(4D)printing is a powerful digital tool that can be used to obtain optimal internal architectures for the efficient performance of porous soft actuators.This paper employs TO analysis for achieving high bending deflection of a 3D printed polyelectrolyte actuator,which shows bending deformations in response to electrical stimuli in an electrolyte solution.The performance of the actuator is studied in terms of maximum bending and actuation rate compared with a solid,uniformly 3D printed and topology-optimized actuator.The experimental results proved the effectiveness of TO on achieving higher bending deformation and actuation rate against a uniformly 3D printed actuator. 展开更多
关键词 Topology optimization 4d printing 3D printing Soft actuator
原文传递
4D printing of polyurethane paint-based composites 被引量:4
17
作者 Jheng-Wun Su Wenxin Gao +6 位作者 Khoinguyen Trinh Stuart M.Kenderes Ezgi Tekin Pulatsu Cheng Zhang Alan Whittington Mengshi Lin Jian Lin 《International Journal of Smart and Nano Materials》 SCIE EI 2019年第3期237-248,共12页
In recent studies,polyurethane has shown multiple properties that make it an excellent candidate material in 4D printing.In this study,we present a simple and inexpensive additive method to print waterborne polyuretha... In recent studies,polyurethane has shown multiple properties that make it an excellent candidate material in 4D printing.In this study,we present a simple and inexpensive additive method to print waterborne polyurethane paint-based composites by adding carboxymethyl cellulose(CMC)and silicon oxide(SiO2)nanoparticles to the paint.The first function of CMC and SiO_(2) is to improve rheological properties of the polyurethane paint for making a printable precursor,which improves the printing resolution and enhances additive manufacturability.Second,the composite precursors improve the curing rate of the polyurethane paint without changing its inherited shape memory properties.Third,the printed composite parts shown enhanced mechanical strength compared with that of the parts printed with pure polyurethane.Finally,the 3D printedpolyurethane-CMCandSiO_(2) parts exhibit time-resolved shape transformation upon heat stimulation.To the best of our knowledge,this is the first study of using the polyurethane paint as the precursor for 4D printing,which would open new possibilities in future applications in biomedical engineering,soft robotics and so on. 展开更多
关键词 4d printing polyurethane paint carboxymethyl cellulose silicon oxide
原文传递
Direct ink writing of programmable functional silicone-based composites for 4D printing applications 被引量:6
18
作者 Zhiyang Lyu J.ustin Koh +10 位作者 Gwendolyn J.H.Lim Danwei Zhang Ting Xiong Lei Zhang Siqi Liu Junfei Duan Jun Ding John Wang Jinlan Wang Yunfei Chen Chaobin He 《Interdisciplinary Materials》 2022年第4期507-516,共10页
Polydimethylsiloxane(PDMS)has been widely used in flexible electronics,soft robotics,and bioelectronics.However,the fabrication of PDMS-based devices has mostly relied on conventional approaches,such as casting and mo... Polydimethylsiloxane(PDMS)has been widely used in flexible electronics,soft robotics,and bioelectronics.However,the fabrication of PDMS-based devices has mostly relied on conventional approaches,such as casting and molding,thereby limiting their potential.Here we fabricate PDMS-based composites with programmable microstructures by direct ink writing and realize their practical functionalities of four-dimensional(4D)printing.The mechanical,thermomechanical and magnetic properties of the three-dimensional-printed composites can be well tailored by using carbon,metal,or ceramic functional fillers.By taking advantage of the printable,flexible,and magnetic PDMS composites,we demonstrate new practical functionalities of 4D printing by designing programmable architectures,including magnetic-field-driven battery cases and patchworks,as well as arbitrary morphing ceramic structures.In particular,4D-printed batteries are constructed by PDMS-based battery cases for the first time,which can be actuated via external magnetic field.This study broadens the paradigm of 4D printing for prospective applications,such as implant batteries,biomimetic engineering,and customized biomedical devices. 展开更多
关键词 4d printing 4d-printed batteries direct ink writing PDMS polymer-derived ceramics
原文传递
4D Printing:History and Recent Progress 被引量:12
19
作者 Jing-Jun Wu Li-Mei Huang +1 位作者 Qian Zhao Tao Xie 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2018年第5期563-575,共13页
4D printing has attracted great interest since the concept was introduced in 2012. The past 5 years have witnessed rapid advances in both 4D printing processes and materials. Unlike 3D printing, 4D printing allows the... 4D printing has attracted great interest since the concept was introduced in 2012. The past 5 years have witnessed rapid advances in both 4D printing processes and materials. Unlike 3D printing, 4D printing allows the printed part to change its shape and function with time in response to change in external conditions such as temperature, light, electricity, and water. In this review, we first overview the history of 4D printing and discuss its definition. We then summarize recent technological advances in 4D printing with focuses on methods, materials, and their intrinsic links. Finally, we discuss potential applications and offer perspectives for this exciting new field. 展开更多
关键词 4d printing Shape memory polymer Hydrogel Multi-material structure Single-material structure
原文传递
Modified commercial UV curable elastomers for passive 4D printing 被引量:2
20
作者 Hardik Hingorani Yuan-Fang Zhang +2 位作者 Biao Zhang Ahmad Serjouei Qi Ge 《International Journal of Smart and Nano Materials》 SCIE EI 2019年第3期225-236,共12页
Conventional 4D printing technologies are realized by combining 3D printing with soft active materials such as shape memory polymers(SMPs)and hydrogels.However,the intrinsic material property limitations make the SMP ... Conventional 4D printing technologies are realized by combining 3D printing with soft active materials such as shape memory polymers(SMPs)and hydrogels.However,the intrinsic material property limitations make the SMP or hydrogel-based 4D printing unsuitable to fabricate the actuators that need to exhibit fast-response,reversible actuations.Instead,pneumatic actuations have been widely adopted by the soft robotics community to achieve fast-response,reversible actuations,and many efforts have been made to apply the pneumatic actuation to 3D printed structures to realize passive 4D printing with fast-response,reversible actuation.However,the 3D printing of soft actuators/robots heavily relies on the commercially available UV curable elastomers the break strains of which are not sufficient for certain applications which require larger elastic deformation.In this paper,we present two simple approaches to tune the mechanical properties such as stretchability,stiffness,and durability of the commercially available UV curable elastomers by adding:(i)mono-acrylate based linear chain builder;(ii)urethane diacrylate-based crosslinker.Material property characterizations have been performed to investigate the effects of adding the two additives on the stretchability,stiffness,mechanical repeatability as well as viscosity.Demonstrations of fully printed robotic finger,grippers,and highly deformable 3D lattice structure are also presented. 展开更多
关键词 4d printing ELASTOMER highly stretchable soft robots
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部