The traffic activity offifth generation(5G)networks demand for new energy management techniques that is dynamic deep and longer duration of sleep as compared to the fourth generation(4G)network technologies that deman...The traffic activity offifth generation(5G)networks demand for new energy management techniques that is dynamic deep and longer duration of sleep as compared to the fourth generation(4G)network technologies that demand always for varied control and data signalling based on control base station(CBS)and data base station(DBS).Hence,this paper discusses the energy management in wireless cellular networks using wide range of control for twice the reduction in energy conservation in non-standalone deployment of 5G network.As the new radio(NR)based 5G network is configured to transmit signal blocks for every 20 ms,the proposed algorithm implements withstanding capacity of on or off based energy switching,which in-turn operates in wide range control by carrying out reduced computational complexity.The proposed Wide range of control for base station in green cellular network using sleep mode for switch(WGCNS)algorithm toon and off the base station will work in heavy load with neighbouring base station.For reducing the overhead duration in air,heuristic versions of the algorithm are proposed at the base station.The algorithm operates based on the specification with suggested protocol-level to give best amount of energy savings.The proposed algorithm reduces 40%to 83%of residual energy based on the traffic pattern of the urban scenario.展开更多
The high-energy consumption and high construction density of 5G base stations have greatly increased the demand for backup energy storage batteries.To maximize overall benefits for the investors and operators of base ...The high-energy consumption and high construction density of 5G base stations have greatly increased the demand for backup energy storage batteries.To maximize overall benefits for the investors and operators of base station energy storage,we proposed a bi-level optimization model for the operation of the energy storage,and the planning of 5G base stations considering the sleep mechanism.A multi-base station cooperative system composed of 5G acer stations was considered as the research object,and the outer goal was to maximize the net profit over the complete life cycle of the energy storage.Furthermore,the power and capacity of the energy storage configuration were optimized.The inner goal included the sleep mechanism of the base station,and the optimization of the energy storage charging and discharging strategy,for minimizing the daily electricity expenditure of the 5G base station system.Additionally,genetic algorithm and mixed integer programming were used to solve the bi-level optimization model,analyze the numerical example test comparison of the three types of batteries and the net income of the configuration,and finally verify the validity of the model.Furthermore,the sleep mechanism,the charging and discharging strategy for energy consumption,and the economic benefits for the operators were investigated to provide reference for the 5G base station energy storage configuration.展开更多
Base station operators deploy a large number of distributed photovoltaics to solve the problems of high energy consumption and high electricity costs of 5G base stations.In this study,the idle space of the base statio...Base station operators deploy a large number of distributed photovoltaics to solve the problems of high energy consumption and high electricity costs of 5G base stations.In this study,the idle space of the base station’s energy storage is used to stabilize the photovoltaic output,and a photovoltaic storage system microgrid of a 5G base station is constructed.Aiming at the capacity planning problem of photovoltaic storage systems,a two-layer optimal configuration method is proposed.The inner layer optimization considers the energy sharing among the base station microgrids,combines the communication characteristics of the 5G base station and the backup power demand of the energy storage battery,and determines an economic scheduling strategy for each photovoltaic storage system with the goal of minimizing the daily operation cost of the base station microgrid.The outer model aims to minimize the annual average comprehensive revenue of the 5G base station microgrid,while considering peak clipping and valley filling,to optimize the photovoltaic storage system capacity.The CPLEX solver and a genetic algorithm were used to solve the two-layer models.Considering the construction of the 5G base station in a certain area as an example,the results showed that the proposed model can not only reduce the cost of the 5G base station operators,but also reduce the peak load of the power grid and promote the local digestion of photovoltaic power.展开更多
This paper proposes a flexible eight-mode high parallel Galois SIMD ASIP(Application Specific Instruction Set Processor).It supports parallel executions of Gold,Scrambling,CRC,CC,Turbo,RM,PSS,SSS encoding LFSR(linear ...This paper proposes a flexible eight-mode high parallel Galois SIMD ASIP(Application Specific Instruction Set Processor).It supports parallel executions of Gold,Scrambling,CRC,CC,Turbo,RM,PSS,SSS encoding LFSR(linear feedback shift registers)algorithms with high performance and flexibility.It can perform also general bit processing and m-sequence.Our design is based on proposed table conversion and a datapath for unified eight-mode encoding.Based on 28 nm digital CMOS technology,the total area is 0.177 mm2 and the clock frequency can be up to 1 GHz.The throughputs of Gold,Scrambling,CRC32,CRC24,CRC16,CRC8,CC,Turbo are 64 Gb/s,64 Gb/s,128 Gb/s,168 Gb/s,256 Gb/s,512 Gb/s,3×80 Gb/s,and 72 Gb/s,respectively.展开更多
The currently available compilation techniques are for general computing and are not optimized for physical layer computing in 5G micro base stations.In such cases,the foreseeable data sizes and small code size are ap...The currently available compilation techniques are for general computing and are not optimized for physical layer computing in 5G micro base stations.In such cases,the foreseeable data sizes and small code size are application specific opportunities for baseband algorithm optimizations.Therefore,the special attention can be paid,for example,the specific register allocation algorithm has not been studied so far.The compilation for kernel sub-routines of baseband in 5G micro base stations is our focusing point.For applications of known and fixed data size,we proposed a compilation scheme of parallel data accessing,while operands can be mainly allocated and stored in registers.Based on a small register group(48×32b),the target of our compilation scheme is the optimization of baseband algorithms based on 4×4 or smaller matrices,maximizing the utilization of register files,and eliminating the extra register data exchanging.Meanwhile,when data is allocated into register files,we used VLIW(Very Long Instruction Word)machine to hide the time of data accessing and minimize the cost of data accessing,thus the total execution time is minimum.Experiments indicate that for algorithms with small data size,the cost of data accessing and extra addressing can be minimized.展开更多
In order to evaluate the electromagnetic environment of 5G base station, measurement and evaluation of the electromagnetic environment are studied. The 12 measuring points are chosen on the roof, inside and outside of...In order to evaluate the electromagnetic environment of 5G base station, measurement and evaluation of the electromagnetic environment are studied. The 12 measuring points are chosen on the roof, inside and outside of the building, which has a 5G base station on the top. The electric field intensity, magnetic field intensity, and power density have been measured. The measurement methods include background measurement and work measurement. Background measurement is the measurement of environmental electromagnetic field (EMF) before the installation of 5G base station while the working measurement is the measurement after the installation of 5G base station. The evaluation methods include t-test for qualitative evaluation and electromagnetic gain for quantitative evaluation. The results show that the electromagnetic environment after the installation of 5G base station in most places is different from that in the background. And the environmental electromagnetic fields in certain parts are lower than those in the background. The conclusions are as follows: 1) The electromagnetic environment of 5G base station is far lower than the control limit of the national standard and conforms to the national standard;2) The electromagnetic environment of 5G base station has little impact on the electromagnetic environment;3) It is not sufficient to assume that 5G is harmful to health without the results of the epidemiological investigation;4) Before the construction of 5G base station, do background EMF detection, which can provide support for future evaluation.展开更多
A new power estimation method is proposed for base station(BS) in this paper.Based on this method,a software platform for power estimation is developed.The proposed method models power consumption on different abstrac...A new power estimation method is proposed for base station(BS) in this paper.Based on this method,a software platform for power estimation is developed.The proposed method models power consumption on different abstraction levels by splitting a typical base station into several basic components at different levels in the view of embedded system design.In particular,our focus is on baseband IC(Integrate Circuit) due to it's the dominant power consumer in small cells.Baseband power model is based on arithmetic computing costs of selected algorithms.All computing and storage costs are calibrated using algorithm complexity,hardware architecture,activity ratio,silicon technology,and overheads on all hierarchies.Micro architecture and IC technology are considered.The model enables power comparison of different types of base stations configured with different baseband algorithms,micro architectures,and ICs.The model also supports cellular operators in power estimation of different deployment strategies and transmission schemes.The model is verified by comparing power consumption with a real LTE base station.By exposing more configuration freedoms,the platform can be used for power estimation of current and future base stations.展开更多
With the large-scale connection of 5G base stations(BSs)to the distribution networks(DNs),5G BSs are utilized as flexible loads to participate in the peak load regulation,where the BSs can be divided into base station...With the large-scale connection of 5G base stations(BSs)to the distribution networks(DNs),5G BSs are utilized as flexible loads to participate in the peak load regulation,where the BSs can be divided into base station groups(BSGs)to realize inter-district energy transfer.A Stackelberg game-based optimization framework is proposed,where the distribution net-work operator(DNO)works as a leader with dynamic pricing for multi-BSGs;while BSGs serve as followers with the ability of demand response to adjust their charging and discharging strategies in temporal dimension and load migration strategy in spatial dimension.Subsequently,the presence and uniqueness of the Stackelberg equilibrium(SE)are provided.Moreover,differential evolution is adopted to reach the SE and the optimization problem in multi-BSGs is decomposed to solve the time-space coupling.Finally,through simulation of a practical system,the results show that the DNO operation profit is increased via cutting down the peak load and the operation costs for multi-BSGs are reduced,which reaches a winwin effect.展开更多
Knowledge of the electromagnetic radiation characteristics of 5G base stations under diferent circumstances is useful for risk prevention,assessment,and management.This paper selects several typical scenes(Open spaces...Knowledge of the electromagnetic radiation characteristics of 5G base stations under diferent circumstances is useful for risk prevention,assessment,and management.This paper selects several typical scenes(Open spaces,building concentration areas,user and building intensive areas)for electromagnetic radiation monitoring,and analyzes the relationship between ambient radiated power density and base station background.The results show that the factors that have signifcant impacts on the environmental radiation power density of 5G base stations including transmission distance,base station distribution,user density,building refection superposition and so on.The radiation energy decays rapidly with distance.When the density of the building distribution is too large,the superposition efect caused by the refected wave is concentrated at the distance of 50-70 meters.When the user density decreases(the superposition efect of refected waves decreases),the 5G monitoring value follows the direct wave attenuation law and decreases rapidly with the increase of distance.Points with higher measured radiation in the simple access condition also had higher measured radiation in the high-speed download condition.With the popularization of 5G mobile phones and the increase of user density,the resource utilization of a single user will decline to the normal operation state,and the radiation environmental impact will be further reduced.展开更多
The penetration of distributed energy resources(DERs) and energy-intensive resources is gradually increasing in active distribution networks(ADNs), which leads to frequent and severe voltage violation problems. As a d...The penetration of distributed energy resources(DERs) and energy-intensive resources is gradually increasing in active distribution networks(ADNs), which leads to frequent and severe voltage violation problems. As a densely distributed flexible resource in the future distribution network, 5G base station(BS) backup battery is used to regulate the voltage profile of ADN in this paper. First, the dispatchable potential of 5G BS backup batteries is analyzed. Considering the spatial-temporal characteristics of electric load for 5G BS, the dispatchable capacity of backup batteries at different time intervals is evaluated based on historical heat map data. Then, a voltage profile optimization model for ADN is established, consisting of 5G BS backup batteries and other voltage regulation resources. In this model, the charging/discharging behavior of backup batteries is based on its evaluation result of dispatchable capacity. Finally, the range of charging/discharging cost coefficients of 5G BS that benefits ADN and 5G operators are analyzed respectively. Further, an incentive policy for 5G operators is proposed. Under this policy, the charging/discharging cost coefficients of 5G BS can achieve a win-win situation for ADN and 5G operators. As an emerging flexible resource in ADN, the effectiveness and economy of 5G BS backup batteries participating in voltage profile optimization are verified in a test distribution network.展开更多
The Active Antenna Unit(AAU)on the outdoor tower is the key equipment to support the mobile communication of 5G.To suppress the overheating of AAU in summer,effective cooling measures are essential.In the present stud...The Active Antenna Unit(AAU)on the outdoor tower is the key equipment to support the mobile communication of 5G.To suppress the overheating of AAU in summer,effective cooling measures are essential.In the present study,a numerical model of an AAU device with two chips in the outdoor environment was established to explore the surface temperature distribution under a coupling heat transfer process with natural convection and solar radiation was obtained.Moreover,the effects of the fin number,the fin height and the heat flux were discussed on the cooling performance.The results proved that the fins with a number of 12 presented the best cooling performance in this paper.By contrast,increasing the height of fins was still an effective way to improve the cooling performance of fins in outdoor conditions and to resist the thermal shock of chips.Besides,punching through holes on the fins,adding graphite heat spreader and reducing surface emissivity are effective ways to improve the cooling performance.After the optimizations,the maximum temperature decreased by 3.5℃in total.In other words,the contribution of these optimizations to the cooling performance was equivalent to an increase of fin height in 9 mm.展开更多
It is not difficult to predict that wireless data traffic will continue to grow and new cellular systems are to be built to provide higher data rates.Thus,for 5G(fifth generation)cellular systems,various approaches ar...It is not difficult to predict that wireless data traffic will continue to grow and new cellular systems are to be built to provide higher data rates.Thus,for 5G(fifth generation)cellular systems,various approaches are studied including millimeter-wave(mm-wave)communications and HetNets(Heterogeneous Networks)with small cells.In mm-wave bands,since a much wider bandwidth is available,higher data rates can be achieved.However,mm-wave transmissions suffer from blockage.In order to take advantage of a wide bandwidth in mm-wave bands with mitigating the blockage problem,A HetNet consisting of micro-wave Base Stations(BSs)for macro cells and mm-wave BSs for small cells were consider and its energy efficiency in terms of the communication range of mm-wave BSs were studied.It is shown that the optimal communication range of mm-wave BSs can improve the energy efficiency.展开更多
文摘The traffic activity offifth generation(5G)networks demand for new energy management techniques that is dynamic deep and longer duration of sleep as compared to the fourth generation(4G)network technologies that demand always for varied control and data signalling based on control base station(CBS)and data base station(DBS).Hence,this paper discusses the energy management in wireless cellular networks using wide range of control for twice the reduction in energy conservation in non-standalone deployment of 5G network.As the new radio(NR)based 5G network is configured to transmit signal blocks for every 20 ms,the proposed algorithm implements withstanding capacity of on or off based energy switching,which in-turn operates in wide range control by carrying out reduced computational complexity.The proposed Wide range of control for base station in green cellular network using sleep mode for switch(WGCNS)algorithm toon and off the base station will work in heavy load with neighbouring base station.For reducing the overhead duration in air,heuristic versions of the algorithm are proposed at the base station.The algorithm operates based on the specification with suggested protocol-level to give best amount of energy savings.The proposed algorithm reduces 40%to 83%of residual energy based on the traffic pattern of the urban scenario.
基金supported by the State Grid Science and Technology Project(KJ21-1-56).
文摘The high-energy consumption and high construction density of 5G base stations have greatly increased the demand for backup energy storage batteries.To maximize overall benefits for the investors and operators of base station energy storage,we proposed a bi-level optimization model for the operation of the energy storage,and the planning of 5G base stations considering the sleep mechanism.A multi-base station cooperative system composed of 5G acer stations was considered as the research object,and the outer goal was to maximize the net profit over the complete life cycle of the energy storage.Furthermore,the power and capacity of the energy storage configuration were optimized.The inner goal included the sleep mechanism of the base station,and the optimization of the energy storage charging and discharging strategy,for minimizing the daily electricity expenditure of the 5G base station system.Additionally,genetic algorithm and mixed integer programming were used to solve the bi-level optimization model,analyze the numerical example test comparison of the three types of batteries and the net income of the configuration,and finally verify the validity of the model.Furthermore,the sleep mechanism,the charging and discharging strategy for energy consumption,and the economic benefits for the operators were investigated to provide reference for the 5G base station energy storage configuration.
基金supported by the State Grid Science and Technology Project(KJ21-1-56).
文摘Base station operators deploy a large number of distributed photovoltaics to solve the problems of high energy consumption and high electricity costs of 5G base stations.In this study,the idle space of the base station’s energy storage is used to stabilize the photovoltaic output,and a photovoltaic storage system microgrid of a 5G base station is constructed.Aiming at the capacity planning problem of photovoltaic storage systems,a two-layer optimal configuration method is proposed.The inner layer optimization considers the energy sharing among the base station microgrids,combines the communication characteristics of the 5G base station and the backup power demand of the energy storage battery,and determines an economic scheduling strategy for each photovoltaic storage system with the goal of minimizing the daily operation cost of the base station microgrid.The outer model aims to minimize the annual average comprehensive revenue of the 5G base station microgrid,while considering peak clipping and valley filling,to optimize the photovoltaic storage system capacity.The CPLEX solver and a genetic algorithm were used to solve the two-layer models.Considering the construction of the 5G base station in a certain area as an example,the results showed that the proposed model can not only reduce the cost of the 5G base station operators,but also reduce the peak load of the power grid and promote the local digestion of photovoltaic power.
基金supported in part by the Project of the National Natural Science Foundation of China(Grant No.61961014)supported by the Hainan University project funding KYQD(ZR)1974。
文摘This paper proposes a flexible eight-mode high parallel Galois SIMD ASIP(Application Specific Instruction Set Processor).It supports parallel executions of Gold,Scrambling,CRC,CC,Turbo,RM,PSS,SSS encoding LFSR(linear feedback shift registers)algorithms with high performance and flexibility.It can perform also general bit processing and m-sequence.Our design is based on proposed table conversion and a datapath for unified eight-mode encoding.Based on 28 nm digital CMOS technology,the total area is 0.177 mm2 and the clock frequency can be up to 1 GHz.The throughputs of Gold,Scrambling,CRC32,CRC24,CRC16,CRC8,CC,Turbo are 64 Gb/s,64 Gb/s,128 Gb/s,168 Gb/s,256 Gb/s,512 Gb/s,3×80 Gb/s,and 72 Gb/s,respectively.
基金supported by the research funding KYQD(ZR)1974 from Hainan University.
文摘The currently available compilation techniques are for general computing and are not optimized for physical layer computing in 5G micro base stations.In such cases,the foreseeable data sizes and small code size are application specific opportunities for baseband algorithm optimizations.Therefore,the special attention can be paid,for example,the specific register allocation algorithm has not been studied so far.The compilation for kernel sub-routines of baseband in 5G micro base stations is our focusing point.For applications of known and fixed data size,we proposed a compilation scheme of parallel data accessing,while operands can be mainly allocated and stored in registers.Based on a small register group(48×32b),the target of our compilation scheme is the optimization of baseband algorithms based on 4×4 or smaller matrices,maximizing the utilization of register files,and eliminating the extra register data exchanging.Meanwhile,when data is allocated into register files,we used VLIW(Very Long Instruction Word)machine to hide the time of data accessing and minimize the cost of data accessing,thus the total execution time is minimum.Experiments indicate that for algorithms with small data size,the cost of data accessing and extra addressing can be minimized.
文摘In order to evaluate the electromagnetic environment of 5G base station, measurement and evaluation of the electromagnetic environment are studied. The 12 measuring points are chosen on the roof, inside and outside of the building, which has a 5G base station on the top. The electric field intensity, magnetic field intensity, and power density have been measured. The measurement methods include background measurement and work measurement. Background measurement is the measurement of environmental electromagnetic field (EMF) before the installation of 5G base station while the working measurement is the measurement after the installation of 5G base station. The evaluation methods include t-test for qualitative evaluation and electromagnetic gain for quantitative evaluation. The results show that the electromagnetic environment after the installation of 5G base station in most places is different from that in the background. And the environmental electromagnetic fields in certain parts are lower than those in the background. The conclusions are as follows: 1) The electromagnetic environment of 5G base station is far lower than the control limit of the national standard and conforms to the national standard;2) The electromagnetic environment of 5G base station has little impact on the electromagnetic environment;3) It is not sufficient to assume that 5G is harmful to health without the results of the epidemiological investigation;4) Before the construction of 5G base station, do background EMF detection, which can provide support for future evaluation.
基金The finance supporting from National High Technical Research and Development Program of China(863program)2014AA01A705
文摘A new power estimation method is proposed for base station(BS) in this paper.Based on this method,a software platform for power estimation is developed.The proposed method models power consumption on different abstraction levels by splitting a typical base station into several basic components at different levels in the view of embedded system design.In particular,our focus is on baseband IC(Integrate Circuit) due to it's the dominant power consumer in small cells.Baseband power model is based on arithmetic computing costs of selected algorithms.All computing and storage costs are calibrated using algorithm complexity,hardware architecture,activity ratio,silicon technology,and overheads on all hierarchies.Micro architecture and IC technology are considered.The model enables power comparison of different types of base stations configured with different baseband algorithms,micro architectures,and ICs.The model also supports cellular operators in power estimation of different deployment strategies and transmission schemes.The model is verified by comparing power consumption with a real LTE base station.By exposing more configuration freedoms,the platform can be used for power estimation of current and future base stations.
基金supported by the National Natural Science Foundation of China(No.51877076).
文摘With the large-scale connection of 5G base stations(BSs)to the distribution networks(DNs),5G BSs are utilized as flexible loads to participate in the peak load regulation,where the BSs can be divided into base station groups(BSGs)to realize inter-district energy transfer.A Stackelberg game-based optimization framework is proposed,where the distribution net-work operator(DNO)works as a leader with dynamic pricing for multi-BSGs;while BSGs serve as followers with the ability of demand response to adjust their charging and discharging strategies in temporal dimension and load migration strategy in spatial dimension.Subsequently,the presence and uniqueness of the Stackelberg equilibrium(SE)are provided.Moreover,differential evolution is adopted to reach the SE and the optimization problem in multi-BSGs is decomposed to solve the time-space coupling.Finally,through simulation of a practical system,the results show that the DNO operation profit is increased via cutting down the peak load and the operation costs for multi-BSGs are reduced,which reaches a winwin effect.
基金supported by the Ecological Environment Research Project of Jiangsu Province:5G Base station radiation environment monitoring technology and environmental impact research(No.2020014).
文摘Knowledge of the electromagnetic radiation characteristics of 5G base stations under diferent circumstances is useful for risk prevention,assessment,and management.This paper selects several typical scenes(Open spaces,building concentration areas,user and building intensive areas)for electromagnetic radiation monitoring,and analyzes the relationship between ambient radiated power density and base station background.The results show that the factors that have signifcant impacts on the environmental radiation power density of 5G base stations including transmission distance,base station distribution,user density,building refection superposition and so on.The radiation energy decays rapidly with distance.When the density of the building distribution is too large,the superposition efect caused by the refected wave is concentrated at the distance of 50-70 meters.When the user density decreases(the superposition efect of refected waves decreases),the 5G monitoring value follows the direct wave attenuation law and decreases rapidly with the increase of distance.Points with higher measured radiation in the simple access condition also had higher measured radiation in the high-speed download condition.With the popularization of 5G mobile phones and the increase of user density,the resource utilization of a single user will decline to the normal operation state,and the radiation environmental impact will be further reduced.
基金supported by the National Natural Science Foundation of China (No.52077017)。
文摘The penetration of distributed energy resources(DERs) and energy-intensive resources is gradually increasing in active distribution networks(ADNs), which leads to frequent and severe voltage violation problems. As a densely distributed flexible resource in the future distribution network, 5G base station(BS) backup battery is used to regulate the voltage profile of ADN in this paper. First, the dispatchable potential of 5G BS backup batteries is analyzed. Considering the spatial-temporal characteristics of electric load for 5G BS, the dispatchable capacity of backup batteries at different time intervals is evaluated based on historical heat map data. Then, a voltage profile optimization model for ADN is established, consisting of 5G BS backup batteries and other voltage regulation resources. In this model, the charging/discharging behavior of backup batteries is based on its evaluation result of dispatchable capacity. Finally, the range of charging/discharging cost coefficients of 5G BS that benefits ADN and 5G operators are analyzed respectively. Further, an incentive policy for 5G operators is proposed. Under this policy, the charging/discharging cost coefficients of 5G BS can achieve a win-win situation for ADN and 5G operators. As an emerging flexible resource in ADN, the effectiveness and economy of 5G BS backup batteries participating in voltage profile optimization are verified in a test distribution network.
基金the financial support from the National Natural Science Foundation of China(No.51906257 and No.52006243)the Major Program of Nature Science Foundation of Shandong Province(No.ZR2019ZD11)。
文摘The Active Antenna Unit(AAU)on the outdoor tower is the key equipment to support the mobile communication of 5G.To suppress the overheating of AAU in summer,effective cooling measures are essential.In the present study,a numerical model of an AAU device with two chips in the outdoor environment was established to explore the surface temperature distribution under a coupling heat transfer process with natural convection and solar radiation was obtained.Moreover,the effects of the fin number,the fin height and the heat flux were discussed on the cooling performance.The results proved that the fins with a number of 12 presented the best cooling performance in this paper.By contrast,increasing the height of fins was still an effective way to improve the cooling performance of fins in outdoor conditions and to resist the thermal shock of chips.Besides,punching through holes on the fins,adding graphite heat spreader and reducing surface emissivity are effective ways to improve the cooling performance.After the optimizations,the maximum temperature decreased by 3.5℃in total.In other words,the contribution of these optimizations to the cooling performance was equivalent to an increase of fin height in 9 mm.
基金supported by The National Research Foundation of Korea(No.NRF-2014R1A1A2A16051720)The National Natural Science Foundation of China(No.91338106,No.61571025,No.61201189,No.61231011,No.61231013).
文摘It is not difficult to predict that wireless data traffic will continue to grow and new cellular systems are to be built to provide higher data rates.Thus,for 5G(fifth generation)cellular systems,various approaches are studied including millimeter-wave(mm-wave)communications and HetNets(Heterogeneous Networks)with small cells.In mm-wave bands,since a much wider bandwidth is available,higher data rates can be achieved.However,mm-wave transmissions suffer from blockage.In order to take advantage of a wide bandwidth in mm-wave bands with mitigating the blockage problem,A HetNet consisting of micro-wave Base Stations(BSs)for macro cells and mm-wave BSs for small cells were consider and its energy efficiency in terms of the communication range of mm-wave BSs were studied.It is shown that the optimal communication range of mm-wave BSs can improve the energy efficiency.