Au nanowires in 4H crystalline phase(4H Au NWs)are synthesized by colloid solution methods.The crys-talline phase and surface structure as well as its performance toward electrochemical oxidation of CO be-fore and aft...Au nanowires in 4H crystalline phase(4H Au NWs)are synthesized by colloid solution methods.The crys-talline phase and surface structure as well as its performance toward electrochemical oxidation of CO be-fore and after removing adsorbed oleylamine molecules(OAs)intro-duced from its synthesis are evaluat-ed by high-resolution transmission electron microscopy(HR-TEM),X-ray diffraction(XRD),underpoten-tial deposition of Pb(Pb-upd)and cyclic voltammetry.Different methods,i.e.acetic acid cleaning,electrochemical oxidation cleaning,and diethylamine replacement,have been tried to remove the adsorbed OAs.For all methods,upon the removal of the adsorbed OAs,the morphology of 4H gold nanoparticles is found to gradually change from nanowires to large dumbbell-shaped nanoparticles,accompanying with a transition from the 4H phase to the face-centered cubic phase.On the other hand,the Pb-upd results show that the sample sur-faces have almost the same facet composition before and after removal of the adsorbed OAs.After electrochemical cleaning with continuous potential scans up to 1.3 V,CO electro-oxida-tion activity of the 4H Au sample is significantly improved.The CO electro-oxidation activi-ty is compared with results on the three basel Au single crystalline surfaces reported in the lit-erature,possible origins for its enhancement are discussed.展开更多
Iodine-sulfur (IS) thermochemical water-splitting cycle is the most promising massive hydrogen production process. To avoid the undesirable side reactions between hydriodic acid(HI) and sulfuric acid (H2SO4), it...Iodine-sulfur (IS) thermochemical water-splitting cycle is the most promising massive hydrogen production process. To avoid the undesirable side reactions between hydriodic acid(HI) and sulfuric acid (H2SO4), it is necessary to purify the two phases formed by the Bunsen reaction. The purification process could be achieved by reverse reaction of the Bunsen reaction. In this study, the purification of the H2SO4 and HI Phases was studied. The purification proceeded in both batches and the continuous mode, the influences of operational parameters, including the reaction temperature, the flow rate of nitrogen gas, and the composition of the raw material solutions, on the purification effect, were investigated. Results showed that the purification of the H2SO4 phase was dominantly-affected by the reaction temperature, and iodine ion in the sulfuric acid phase could be removed completely when the temperature was above 130℃; although, the purification effect of the HI phase improved with increasing of both the flow rate of nitrogen gas and temperature.展开更多
The properties of two-dimensional(2D)materials are highly dependent on their phase and thickness.Various phases exist in tin disulfide(SnS_(2)),resulting in promising electronic and optical properties.Hence,accurately...The properties of two-dimensional(2D)materials are highly dependent on their phase and thickness.Various phases exist in tin disulfide(SnS_(2)),resulting in promising electronic and optical properties.Hence,accurately identifying the phase and thickness of SnS_(2)nanosheets is prior to their optoelectronic applications.Herein,layered 2H-SnS_(2)and 4H-SnS_(2)crystals were grown by chemical vapor transportation and the crystalline phase of SnS_(2)was characterized by X-ray diffraction,ultralow frequency(ULF)Raman spectroscopy and high-resolution transmission electron microscope.As-grown crystals were mechanically exfoliated to single-and few-layer nanosheets,which were investigated by optical microscopy,atomic force microscopy and ULF Raman spectroscopy.Although the 2H-SnS_(2)and 4H-SnS_(2)nanosheets have similar optical contrast on SiO_(2)/Si substrates,their ULF Raman spectra obviously show different shear and breathing modes,which are highly dependent on their phases and thicknesses.Interestingly,the SnS_(2)nanosheets have shown phase-dependent electrical properties.The 4H-SnS_(2)nanosheet shows a current on/off ratio of 2.58×10^(5) and excellent photosensitivity,which are much higher than those of the 2H-SnS_(2)nanosheet.Our work not only offers an accurate method for identifying single-and few-layer SnS_(2)nanosheets with different phases,but also paves the way for the application of SnS_(2)nanosheets in highperformance optoelectronic devices.展开更多
基金supported by the National Natural Science Foundation of China(No.22172151 and 21972131).
文摘Au nanowires in 4H crystalline phase(4H Au NWs)are synthesized by colloid solution methods.The crys-talline phase and surface structure as well as its performance toward electrochemical oxidation of CO be-fore and after removing adsorbed oleylamine molecules(OAs)intro-duced from its synthesis are evaluat-ed by high-resolution transmission electron microscopy(HR-TEM),X-ray diffraction(XRD),underpoten-tial deposition of Pb(Pb-upd)and cyclic voltammetry.Different methods,i.e.acetic acid cleaning,electrochemical oxidation cleaning,and diethylamine replacement,have been tried to remove the adsorbed OAs.For all methods,upon the removal of the adsorbed OAs,the morphology of 4H gold nanoparticles is found to gradually change from nanowires to large dumbbell-shaped nanoparticles,accompanying with a transition from the 4H phase to the face-centered cubic phase.On the other hand,the Pb-upd results show that the sample sur-faces have almost the same facet composition before and after removal of the adsorbed OAs.After electrochemical cleaning with continuous potential scans up to 1.3 V,CO electro-oxida-tion activity of the 4H Au sample is significantly improved.The CO electro-oxidation activi-ty is compared with results on the three basel Au single crystalline surfaces reported in the lit-erature,possible origins for its enhancement are discussed.
基金Supported by the National Defense Fundamental Research Fund (A1420080145)
文摘Iodine-sulfur (IS) thermochemical water-splitting cycle is the most promising massive hydrogen production process. To avoid the undesirable side reactions between hydriodic acid(HI) and sulfuric acid (H2SO4), it is necessary to purify the two phases formed by the Bunsen reaction. The purification process could be achieved by reverse reaction of the Bunsen reaction. In this study, the purification of the H2SO4 and HI Phases was studied. The purification proceeded in both batches and the continuous mode, the influences of operational parameters, including the reaction temperature, the flow rate of nitrogen gas, and the composition of the raw material solutions, on the purification effect, were investigated. Results showed that the purification of the H2SO4 phase was dominantly-affected by the reaction temperature, and iodine ion in the sulfuric acid phase could be removed completely when the temperature was above 130℃; although, the purification effect of the HI phase improved with increasing of both the flow rate of nitrogen gas and temperature.
基金supported by the National Natural Science Foun-dation of China(Nos.51832001,21571101 and 51322202)the Natural Science Foundation of Jiangsu Province in China(No.BK20161543)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(No.15KJB430016).
文摘The properties of two-dimensional(2D)materials are highly dependent on their phase and thickness.Various phases exist in tin disulfide(SnS_(2)),resulting in promising electronic and optical properties.Hence,accurately identifying the phase and thickness of SnS_(2)nanosheets is prior to their optoelectronic applications.Herein,layered 2H-SnS_(2)and 4H-SnS_(2)crystals were grown by chemical vapor transportation and the crystalline phase of SnS_(2)was characterized by X-ray diffraction,ultralow frequency(ULF)Raman spectroscopy and high-resolution transmission electron microscope.As-grown crystals were mechanically exfoliated to single-and few-layer nanosheets,which were investigated by optical microscopy,atomic force microscopy and ULF Raman spectroscopy.Although the 2H-SnS_(2)and 4H-SnS_(2)nanosheets have similar optical contrast on SiO_(2)/Si substrates,their ULF Raman spectra obviously show different shear and breathing modes,which are highly dependent on their phases and thicknesses.Interestingly,the SnS_(2)nanosheets have shown phase-dependent electrical properties.The 4H-SnS_(2)nanosheet shows a current on/off ratio of 2.58×10^(5) and excellent photosensitivity,which are much higher than those of the 2H-SnS_(2)nanosheet.Our work not only offers an accurate method for identifying single-and few-layer SnS_(2)nanosheets with different phases,but also paves the way for the application of SnS_(2)nanosheets in highperformance optoelectronic devices.