Since the 1990s,continuous technical and scientific advances have defied the diffraction limit in microscopy and enabled three-dimensional(3D)super-resolution imaging.An important milestone in this pursuit is the cohe...Since the 1990s,continuous technical and scientific advances have defied the diffraction limit in microscopy and enabled three-dimensional(3D)super-resolution imaging.An important milestone in this pursuit is the coherent utilization of two opposing objectives(4Pi geometry)and its combination with superresolution microscopy.Herein,we review the recent progress in 4Pi nanoscopy,which provides a 3D,non-invasive,diffraction-unlimited,and isotropic resolution in transparent samples.This review includes both the targeted and stochastic switching modalities of 4Pi nanoscopy.The schematics,principles,applications,and future potential of 4Pi nanoscopy are discussed in detail.展开更多
基金financially supported by the grants from National Key Research and Development Program of China (2018YFA0701400 and 2018YFE0119000)the Fundamental Research Funds for the Central Universities (2019QNA5006)+2 种基金ZJU-Sunny Photonics Innovation Center (2019-01)Zhejiang Provincial Natural Science Foundation of China (LR18H180001)startup grant from Southern University of Science and Technology
文摘Since the 1990s,continuous technical and scientific advances have defied the diffraction limit in microscopy and enabled three-dimensional(3D)super-resolution imaging.An important milestone in this pursuit is the coherent utilization of two opposing objectives(4Pi geometry)and its combination with superresolution microscopy.Herein,we review the recent progress in 4Pi nanoscopy,which provides a 3D,non-invasive,diffraction-unlimited,and isotropic resolution in transparent samples.This review includes both the targeted and stochastic switching modalities of 4Pi nanoscopy.The schematics,principles,applications,and future potential of 4Pi nanoscopy are discussed in detail.