Insulin stimulates the production of PI(3,4,5)P3 in muscle cells, and this is required to stimulate GLUT4 fusion with the plasma membrane. Introduction of exogenous PI(3,4,5)P3 to muscle cells recapitulates insulin...Insulin stimulates the production of PI(3,4,5)P3 in muscle cells, and this is required to stimulate GLUT4 fusion with the plasma membrane. Introduction of exogenous PI(3,4,5)P3 to muscle cells recapitulates insulin's effects on GLUT4 fusion with the plasma membrane, but not glucose uptake. This study aims to explore the mechanism behind this difference. In L6-GLUT4myc muscle cells, the availability of the GLUT4 intracellular C-terminus and extracellular myc epitopes for immunoreactivity on plasma membrane lawns was detected with the corresponding antibody. The availability of the active site of GLUT4 from extracellular medium was assessed by affinity photolabeling with the cell impermeant compound Bio-LC-ATB-BMPA. 100nmol/L insulin and 10μmol/L PI(3,4,5)P3 caused myc signal gain on the plasma membrane lawns by 1.64-fold and 1.58-fold over basal, respectively. Insulin, but not PI(3,4,5)P3, increased photolabeling of GLUT4 and immunolabeling with C-terminus antibody by 2.47-fold and 2.04-fold over basal, respectively. Upon insulin stimulation, the C-terminus signal gain was greater than myc signal gain (2.04-fold vs. 1.64-fold over basal, respectively) in plasma membrane lawns. These results indicate that (i) PI(3,4,5)P3 does not make the active site of GLUT4 available from the extracellular surface despite causing GLUT4 fusion with the plasma membrane; (ii) the availability of the active site of GLUT4 from the extracellular medium and availability of the C-terminus from the cytosolic site are correlated; (iii) in addition to stimulating GLUT4 translocation, insulin stimulation displaces a protein which masks the GLUT4 C-terminus. We propose that a protein which masks the C-terminus also prevents the active site from being available for photolabelling and possibly glucose uptake after treatment with PI(3,4,5)P3.展开更多
基金the National Natural Science Foundation of China (Grant No. 30570912)the National Natural Science Foundation of China (China-Canada Joint Health Research) (Grant No. 30611120532)+1 种基金the Foundation of Tianjin Education Bureau, China to Niu Wenyan (Grant No. 20040106)the Tianjin Municipal Science and Technology Commission, China (Grant Nos. 06YFGPSH03300 and 07JCZDJC07900)
文摘Insulin stimulates the production of PI(3,4,5)P3 in muscle cells, and this is required to stimulate GLUT4 fusion with the plasma membrane. Introduction of exogenous PI(3,4,5)P3 to muscle cells recapitulates insulin's effects on GLUT4 fusion with the plasma membrane, but not glucose uptake. This study aims to explore the mechanism behind this difference. In L6-GLUT4myc muscle cells, the availability of the GLUT4 intracellular C-terminus and extracellular myc epitopes for immunoreactivity on plasma membrane lawns was detected with the corresponding antibody. The availability of the active site of GLUT4 from extracellular medium was assessed by affinity photolabeling with the cell impermeant compound Bio-LC-ATB-BMPA. 100nmol/L insulin and 10μmol/L PI(3,4,5)P3 caused myc signal gain on the plasma membrane lawns by 1.64-fold and 1.58-fold over basal, respectively. Insulin, but not PI(3,4,5)P3, increased photolabeling of GLUT4 and immunolabeling with C-terminus antibody by 2.47-fold and 2.04-fold over basal, respectively. Upon insulin stimulation, the C-terminus signal gain was greater than myc signal gain (2.04-fold vs. 1.64-fold over basal, respectively) in plasma membrane lawns. These results indicate that (i) PI(3,4,5)P3 does not make the active site of GLUT4 available from the extracellular surface despite causing GLUT4 fusion with the plasma membrane; (ii) the availability of the active site of GLUT4 from the extracellular medium and availability of the C-terminus from the cytosolic site are correlated; (iii) in addition to stimulating GLUT4 translocation, insulin stimulation displaces a protein which masks the GLUT4 C-terminus. We propose that a protein which masks the C-terminus also prevents the active site from being available for photolabelling and possibly glucose uptake after treatment with PI(3,4,5)P3.