期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Influence of supports for selective production of 2,5-dimethylfuran via bimetallic copper-cobalt catalyzed 5-hydroxymethylfurfural hydrogenolysis 被引量:6
1
作者 Sanjay Srivastava G.C.Jadeja Jigisha Parikh 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2017年第4期699-709,共11页
The hydrogenolysis of carbon–oxygen bonds is an important model reaction in upgrading biomass‐derived furanic compounds to transportation fuels.One of these model reactions,namelyconversion of5‐hydroxymethylfurfura... The hydrogenolysis of carbon–oxygen bonds is an important model reaction in upgrading biomass‐derived furanic compounds to transportation fuels.One of these model reactions,namelyconversion of5‐hydroxymethylfurfural(HMF)to the gasoline additive2,5‐dimethylfuran(DMF),isespecially attractive.In this study,bimetallic Cu‐Co catalysts supported on CeO2,ZrO2,and Al2O3were used for the selective hydrogenolysis of HMF to DMF.The structures of the fresh and usedcatalysts were studied using X‐ray diffraction,the Brunauer‐Emmett‐Teller method,transmissionelectron microscopy,temperature‐programmed reduction by H2,temperature‐programmed desorptionof NH3,and CHNS analysis.The structures were correlated with the catalytic activities.TheCu‐Co/CeO2catalyst produced mainly2,5‐bis(hydroxymethyl)furan via reduction of C=O bonds onlarge Cu particles.The Cu‐Co/Al2O3catalyst gave the best selectivity for DMF,as a result of a combinationof highly dispersed Cu,mixed copper–cobalt oxides,and suitable weak acidic sites.Cu‐Co/ZrO2had low selectivity for DMF and produced a combination of variousover‐hydrogenolysis products,including2,5‐dimethyltetrahydrofuran and5,5‐oxybis(methylene)‐bis(2‐methylfuran),because of the presence of strong acidic sites.The reaction pathways and effectsof various operating parameters,namely temperature,H2pressure,and time,were studied to enableoptimization of the selective conversion of HMF to DMF over the Cu‐Co/Al2O3catalyst. 展开更多
关键词 5hydroxymethylfurfural Hydrogenation HYDROGENOLYSIS Copper‐cobalt BIMETALLIC Biofuels
下载PDF
Oxidation of 2,5‐bis(hydroxymethyl)furan to 2,5‐furandicarboxylic acid catalyzed by carbon nanotube‐supported Pd catalysts 被引量:2
2
作者 Zhenyu Li Liyuan Huai +5 位作者 Panpan Hao Xi Zhao Yongzhao Wang Bingsen Zhang Chunlin Chen Jian Zhang 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2022年第3期793-801,共9页
The selective oxidation of 2,5‐bis(hydroxymethyl)furan(BHMF)in this work was proven as a promising route to produce 2,5‐furandicarboxylic acid(FDCA),an emerging bio‐based building‐block with wide application.Under... The selective oxidation of 2,5‐bis(hydroxymethyl)furan(BHMF)in this work was proven as a promising route to produce 2,5‐furandicarboxylic acid(FDCA),an emerging bio‐based building‐block with wide application.Under ambient pressure,the modified carbon nanotube‐supported Pd‐based catalysts demonstrate the maximum FDCA yield of 93.0%with a full conversion of BHMF after 60 min at 60°C,much superior to that of the traditional route using 5‐hydroxymethylfurfural(HMF)as substrates(only a yield of 35.7%).The participation of PdH_(x) active species with metallic Pd can be responsible for the encouraging performance.Meanwhile,a possible reaction pathway proceeding through 2,5‐diformylfuran(DFF)and 5‐formyl‐2‐furancarboxylic acid(FFCA)as process intermediates is suggested for BHMF route.The present work may provide new opportunities to synthesize other high value‐added oxygenates by using BHMF as an alternative feedstock. 展开更多
关键词 2 5‐Bis(hydroxymethyl)furan 2 5‐Furandicarboxylic acid Palladium hydride 5hydroxymethylfurfural Catalytic oxidation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部