Solving intrinsic structural problems such as low conductivity is the main challenge to promote the commercial application of Li_(2)TiSiO_(5).In this study,Li_(2)TiSiO_(5) is synthesized by the sol-gelmethod,and the s...Solving intrinsic structural problems such as low conductivity is the main challenge to promote the commercial application of Li_(2)TiSiO_(5).In this study,Li_(2)TiSiO_(5) is synthesized by the sol-gelmethod,and the surface modification of Li_(2)TiSiO_(5) is carried out at different temperatures using low-temperature plasma to enhance its lithium storage performance.The morphological structure and electrochemical tests demonstrate that plasma treatment can improve the degree of agglomeration.The peak position of the plasma-treated Li_(2)TiSiO_(5) is shifted to a lower angle,and the shift angle increases with increasing sputtering power.Li_(2)TiSiO_(5) after 300 W bombardment shows excellent capacity(144.7 mA·hg^(−1)after 500 cycles at 0.1 Ag^(−1))and rate performance(140 mA·hg^(−1)at 5 Ag^(−1)).Electrochemical analysis indicates that excellent electrochemical performance is attributed to the enhancement of electronic and ionic conductivity by plasma bombardment.展开更多
Stroke is a leading cause of mortality and disability worldwide.Ischemic cell death triggered by the compromised supply of blood oxygen and glucose is one of the major pathophysiology of strokeinduced brain injury.Imp...Stroke is a leading cause of mortality and disability worldwide.Ischemic cell death triggered by the compromised supply of blood oxygen and glucose is one of the major pathophysiology of strokeinduced brain injury.Impaired mitochondrial energy metabolism is observed minutes after stroke and is closely associated with the progression of neuropathology.Recently,a new type of posttranslational modification,known as lysine succinylation,has been recognized to play a significant role in mitochondrial energy metabolism after ischemia.However,the role of succinylation modification in cell metabolism after stroke and its regulation are not well understood.We aimed to review the effects of succinylation on energy metabolism,reactive oxygen species generation,and neuroinflammation,as well as Sirtuin 5 mediated desuccinylation after stroke.We also highlight the potential of targeting succinylation/desuccinylation as a promising strategy for the treatment of stroke.The succinylation level is dynamically regulated by the nonenzymatic or enzymatic transfer of a succinyl group to a protein on lysine residues and the removal of succinyl catalyzed by desuccinylases.Mounting evidence has suggested that succinylation can regulate the metabolic pathway through modulating the activity or stability of metabolic enzymes.Sirtuins,especially Sirtuin 5,are characterized for their desuccinylation activity and have been recognized as a critical regulator of metabolism through desuccinylating numerous metabolic enzymes.Imbalance between succinylation and desuccinylation has been implicated in the pathophysiology of stroke.Pharmacological agents that enhance the activity of Sirtuin 5 have been employed to promote desuccinylation and improve mitochondrial metabolism,and neuroprotective effects of these agents have been observed in experimental stroke studies.However,their therapeutic efficacy in stroke patients should be validated.展开更多
The study of modified RNA known as epitranscriptomics has become increasingly relevant in our understanding of disease-modifying mechanisms.Methylation of N6 adenosine(m^(6)A)and C5 cytosine(m^(5)C)bases occur on mRNA...The study of modified RNA known as epitranscriptomics has become increasingly relevant in our understanding of disease-modifying mechanisms.Methylation of N6 adenosine(m^(6)A)and C5 cytosine(m^(5)C)bases occur on mRNAs,tRNA,mt-tRNA,and rRNA species as well as non-coding RNAs.With emerging knowledge of RNA binding proteins that act as writer,reader,and eraser effector proteins,comes a new understanding of physiological processes controlled by these systems.Such processes when spatiotemporally disrupted within cellular nanodomains in highly specialized tissues such as the brain,give rise to different forms of disease.In this review,we discuss accumulating evidence that changes in the m^(6)A and m^(5)C methylation systems contribute to neurocognitive disorders.Early studies first identified mutations within FMR1 to cause intellectual disability Fragile X syndromes several years before FMR1 was identified as an m^(6)A RNA reader protein.Subsequently,familial mutations within the m^(6)A writer gene METTL5,m^(5)C writer genes NSUN2,NSUN3,NSUN5,and NSUN6,as well as THOC2 and THOC6 that form a protein complex with the m^(5)C reader protein ALYREF,were recognized to cause intellectual development disorders.Similarly,differences in expression of the m^(5)C writer and reader effector proteins,NSUN6,NSUN7,and ALYREF in brain tissue are indicated in individuals with Alzheimer's disease,individuals with a high neuropathological load or have suffered traumatic brain injury.Likewise,an abundance of m^(6)A reader and anti-reader proteins are reported to change across brain regions in Lewy bodies diseases,Alzheimer's disease,and individuals with high cognitive reserve.m^(6)A-modified RNAs are also reported significantly more abundant in dementia with Lewy bodies brain tissue but significantly reduced in Parkinson's disease tissue,whilst modified RNAs are misplaced within diseased cells,particularly where synapses are located.In parahippocampal brain tissue,m^(6)A modification is enriched in transcripts associated with psychiatric disorders including conditions with clear cognitive deficits.These findings indicate a diverse set of molecular mechanisms are influenced by RNA methylation systems that can cause neuronal and synaptic dysfunction underlying neurocognitive disorders.Targeting these RNA modification systems brings new prospects for neural regenerative therapies.展开更多
Various metal-modified ZSM-5 zeolite adsorbents prepared by the impregnation method were applied to the removal of organic chlorides from model naphtha.The adsorption performance and regeneration stability were invest...Various metal-modified ZSM-5 zeolite adsorbents prepared by the impregnation method were applied to the removal of organic chlorides from model naphtha.The adsorption performance and regeneration stability were investigated by static adsorption experiments.The morphologies,structural features,and physicochemical properties of the adsorbents were characterized by X-ray diffraction,Brunauer-Emmett-Teller analysis,NH3 temperature-programmed desorption,scanning electron microscopy,transmission electron microscopy,and pyridine adsorption infrared spectroscopy.The Mg/ZSM-5 zeolite adsorbent possessed a relatively high specific surface area and good metal dispersion and exhibited the best dechlorination and regeneration performance.The characterization results revealed that introduction of the metal exerted a significant influence on the acidic properties of the catalyst surface.A decrease in the ratio of Brønsted acidic sites to Lewis acidic sites and an increase in the amount of moderately acidic sites were confirmed to be responsible for the excellent adsorption performance of the Mg-modified ZSM-5 zeolite.Furthermore,the Langmuir adsorption isotherm model was applied to study the adsorption equilibrium and thermodynamics of the Mg/ZSM-5 adsorbent under mild conditions.The results revealed that the removal of 1,2-dichloroethane by the Mg/ZSM-5 adsorbent was endothermic,spontaneous,disordered,and primarily involved physical adsorption.展开更多
In this study, phosphorus modification by trimethyl phosphate impregnation was employed to enhance the hydrothermal stability of nano‐sized HZSM‐5 zeolites. A parallel modification was studied by ammonium dihydrogen...In this study, phosphorus modification by trimethyl phosphate impregnation was employed to enhance the hydrothermal stability of nano‐sized HZSM‐5 zeolites. A parallel modification was studied by ammonium dihydrogen phosphate impregnation. The modified zeolites were subjected to steam treatment at 800 °C for 4 h (100% steam) and employed as catalysts for olefin catalyticcracking (OCC) of full‐range fluid catalytic cracking (FCC) gasoline. X‐ray diffraction, N2 physicaladsorption and NH3 temperature‐programmed desorption analysis indicated that, although significantimprovements to the hydrothermal stability of nano‐sized HZSM‐5 zeolites can be observedwhen adopting both phosphorus modification strategies, impregnation with trimethyl phosphatedisplays further enhancement of the hydrothermal stability. This is because higher structural crystallinityis retained, larger specific surface areas/micropore volumes form, and there are greaternumbers of surface acid sites. Reaction experiments conducted using a fixed‐bed micro‐reactor(catalyst/oil ratio = 4, time on stream = 4 s) showed OCC of full‐range FCC gasoline-under a fluidized‐bed reaction mode configuration-to be a viable solution for the olefin problem of FCC gasoline.This reaction significantly decreased the olefin content in the full‐range FCC gasoline feed, andspecifically heavy‐end olefins, by converting the olefins into value‐added C2–C4 olefins and aromatics.At the same time, sulfide content of the gasoline decreased via a non‐hydrodesulfurization process.Nano‐sized HZSM‐5 zeolites modified with trimethyl phosphate exhibited enhanced catalytic performance for OCC of full‐range FCC gasoline.展开更多
Post-synthetic treatment of high-silica as-made ZSM-5 with organic template in the micropores was explored to reduce/remove the external surface acid density of ZSM-5. It is found that Na_2H_2 EDTA treatment can selec...Post-synthetic treatment of high-silica as-made ZSM-5 with organic template in the micropores was explored to reduce/remove the external surface acid density of ZSM-5. It is found that Na_2H_2 EDTA treatment can selectively remove the surface Al atoms, but generates new acid sites(likely silanol nests) on the external surface. H_3PO_4 treatment is unable to remove surface Al atoms, while small amount of P is left on the external surface, which effectively decreases the acid density. The catalytic performance of the resultant materials is evaluated in the methanol conversion reaction. H_3PO_4 treatment can effectively improve both the catalytic lifetime and the stability of propene selectivity.This occurs due to a combination of the increased tolerance to the external coke deposition and the depressed coking rate(reduced side reactions). Na_2H_2 EDTA treatment only prolongs the catalytic lifetime, resulting from the improved tolerance to the external coke deposition. Under the optimized H_3PO_4 treatment condition, the resultant ZSM-5 gives a catalytic lifetime of about 1.5 times longer than the precursor. Moreover, the propene selectivity is improved, showing a slight increasing trend until the deactivation.展开更多
Since the electrode/electrolyte interface(EEI)is the main redox center of electrochemical processes,proper manipulation of the EEI microenvironment is crucial to stabilize interfacial behaviors.Here,a finger-paint met...Since the electrode/electrolyte interface(EEI)is the main redox center of electrochemical processes,proper manipulation of the EEI microenvironment is crucial to stabilize interfacial behaviors.Here,a finger-paint method is proposed to enable quick physical modification of glass-fiber separator without complicated chemical technology to modulate EEI of bilateral electrodes for aqueous zinc-ion batteries(ZIBs).An elaborate biochar derived from Aspergillus Niger is exploited as the modification agent of EEI,in which the multi-functional groups assist to accelerate Zn^(2+)desolvation and create a hydrophobic environment to homogenize the deposition behavior of Zn anode.Importantly,the finger-paint interface on separator can effectively protect cathodes from abnormal capacity fluctuation and/or rapid attenuation induced by H_(2)O molecular on the interface,which is demonstrated in modified MnO_(2),V_(2)O_(5),and KMn HCF-based cells.The as-proposed finger-paint method opens a new idea of bilateral interface engineering to facilitate the access to the practical application of the stable zinc electrochemistry.展开更多
生长抑制蛋白5(inhibitor of growth protein 5,ING5)是生长抑制蛋白家族的成员之一,参与调节细胞周期、细胞增殖和凋亡等多种生命活动。家蚕核型多角体病毒(Bombyx mori nucleopolyhedrovirus,BmNPV)侵染家蚕卵巢细胞BmN前后的蛋白质...生长抑制蛋白5(inhibitor of growth protein 5,ING5)是生长抑制蛋白家族的成员之一,参与调节细胞周期、细胞增殖和凋亡等多种生命活动。家蚕核型多角体病毒(Bombyx mori nucleopolyhedrovirus,BmNPV)侵染家蚕卵巢细胞BmN前后的蛋白质乙酰化修饰差异组学分析结果显示,BmN细胞中的ING5蛋白有3个赖氨酸残基位点(K136、K137和K154)的乙酰化修饰水平在BmNPV感染后显著下调。为了探究ING5乙酰化修饰对其功能的影响以及在BmNPV侵染过程中的调控作用机制,首先克隆了家蚕ING5基因,并将BmNPV感染后乙酰化修饰水平显著下调的赖氨酸(K)定点突变为谷氨酰胺(Q)以模拟乙酰化修饰,突变为精氨酸(R)以模拟去乙酰化修饰。然后构建瞬时表达载体并转染BmN细胞,结果显示ING5蛋白过表达具有显著抑制细胞活力的作用,而ING5乙酰化修饰则可以显著提高细胞活力。进一步研究发现,过表达ING5蛋白具有显著促细胞凋亡作用,而ING5乙酰化修饰则显著抑制细胞凋亡。酵母双杂交试验结果显示,野生型ING5与凋亡相关蛋白P53可以互作,但ING5的乙酰化修饰影响了该互作关系;同时还发现ING5的乙酰化可显著降低P53蛋白稳定性。上述结果表明,家蚕ING5可能通过P53依赖的方式参与细胞凋亡调控,但K136、K137和K154位点的乙酰化修饰改变了ING5与P53的相互作用,进而影响细胞凋亡。研究结果将为深入解析家蚕ING5家族蛋白调控BmNPV侵染的作用机制提供试验依据,同时也可为家蚕的抗病毒育种提供新的理论依据。展开更多
基金supported by Changzhou Basic Research Program(No.CJ20235030)the Research Initiation Fund of Changzhou University(No.ZMF23020057).
文摘Solving intrinsic structural problems such as low conductivity is the main challenge to promote the commercial application of Li_(2)TiSiO_(5).In this study,Li_(2)TiSiO_(5) is synthesized by the sol-gelmethod,and the surface modification of Li_(2)TiSiO_(5) is carried out at different temperatures using low-temperature plasma to enhance its lithium storage performance.The morphological structure and electrochemical tests demonstrate that plasma treatment can improve the degree of agglomeration.The peak position of the plasma-treated Li_(2)TiSiO_(5) is shifted to a lower angle,and the shift angle increases with increasing sputtering power.Li_(2)TiSiO_(5) after 300 W bombardment shows excellent capacity(144.7 mA·hg^(−1)after 500 cycles at 0.1 Ag^(−1))and rate performance(140 mA·hg^(−1)at 5 Ag^(−1)).Electrochemical analysis indicates that excellent electrochemical performance is attributed to the enhancement of electronic and ionic conductivity by plasma bombardment.
基金supported by the National Natural Science Foundation of China,No.82071283(to QH)the Natural Science Foundation of Shanghai,No.22ZR1437700(to QH)。
文摘Stroke is a leading cause of mortality and disability worldwide.Ischemic cell death triggered by the compromised supply of blood oxygen and glucose is one of the major pathophysiology of strokeinduced brain injury.Impaired mitochondrial energy metabolism is observed minutes after stroke and is closely associated with the progression of neuropathology.Recently,a new type of posttranslational modification,known as lysine succinylation,has been recognized to play a significant role in mitochondrial energy metabolism after ischemia.However,the role of succinylation modification in cell metabolism after stroke and its regulation are not well understood.We aimed to review the effects of succinylation on energy metabolism,reactive oxygen species generation,and neuroinflammation,as well as Sirtuin 5 mediated desuccinylation after stroke.We also highlight the potential of targeting succinylation/desuccinylation as a promising strategy for the treatment of stroke.The succinylation level is dynamically regulated by the nonenzymatic or enzymatic transfer of a succinyl group to a protein on lysine residues and the removal of succinyl catalyzed by desuccinylases.Mounting evidence has suggested that succinylation can regulate the metabolic pathway through modulating the activity or stability of metabolic enzymes.Sirtuins,especially Sirtuin 5,are characterized for their desuccinylation activity and have been recognized as a critical regulator of metabolism through desuccinylating numerous metabolic enzymes.Imbalance between succinylation and desuccinylation has been implicated in the pathophysiology of stroke.Pharmacological agents that enhance the activity of Sirtuin 5 have been employed to promote desuccinylation and improve mitochondrial metabolism,and neuroprotective effects of these agents have been observed in experimental stroke studies.However,their therapeutic efficacy in stroke patients should be validated.
基金funded by Notingham University and the Neuroscience Support Group Charity,UK(to HMK)supported by a CONACYT PhD scholarshipMD?was supported by the Postdoctoral Research Fellowship Program of TUBITAK。
文摘The study of modified RNA known as epitranscriptomics has become increasingly relevant in our understanding of disease-modifying mechanisms.Methylation of N6 adenosine(m^(6)A)and C5 cytosine(m^(5)C)bases occur on mRNAs,tRNA,mt-tRNA,and rRNA species as well as non-coding RNAs.With emerging knowledge of RNA binding proteins that act as writer,reader,and eraser effector proteins,comes a new understanding of physiological processes controlled by these systems.Such processes when spatiotemporally disrupted within cellular nanodomains in highly specialized tissues such as the brain,give rise to different forms of disease.In this review,we discuss accumulating evidence that changes in the m^(6)A and m^(5)C methylation systems contribute to neurocognitive disorders.Early studies first identified mutations within FMR1 to cause intellectual disability Fragile X syndromes several years before FMR1 was identified as an m^(6)A RNA reader protein.Subsequently,familial mutations within the m^(6)A writer gene METTL5,m^(5)C writer genes NSUN2,NSUN3,NSUN5,and NSUN6,as well as THOC2 and THOC6 that form a protein complex with the m^(5)C reader protein ALYREF,were recognized to cause intellectual development disorders.Similarly,differences in expression of the m^(5)C writer and reader effector proteins,NSUN6,NSUN7,and ALYREF in brain tissue are indicated in individuals with Alzheimer's disease,individuals with a high neuropathological load or have suffered traumatic brain injury.Likewise,an abundance of m^(6)A reader and anti-reader proteins are reported to change across brain regions in Lewy bodies diseases,Alzheimer's disease,and individuals with high cognitive reserve.m^(6)A-modified RNAs are also reported significantly more abundant in dementia with Lewy bodies brain tissue but significantly reduced in Parkinson's disease tissue,whilst modified RNAs are misplaced within diseased cells,particularly where synapses are located.In parahippocampal brain tissue,m^(6)A modification is enriched in transcripts associated with psychiatric disorders including conditions with clear cognitive deficits.These findings indicate a diverse set of molecular mechanisms are influenced by RNA methylation systems that can cause neuronal and synaptic dysfunction underlying neurocognitive disorders.Targeting these RNA modification systems brings new prospects for neural regenerative therapies.
基金This work was financially supported by the Natural Science Foundation of Shandong Province(ZR2021MB134 and ZR2022MB019)the National Natural Science Foundation of China(22008131)+1 种基金the Talent Fund for Province and Ministry Co-construction Collaborative Innovation Center of Eco-chemical Engineering(STHGYX2220)the Opening Fund of State Key Laboratory of Heavy Oil Processing(SKLOP202002002).
文摘Various metal-modified ZSM-5 zeolite adsorbents prepared by the impregnation method were applied to the removal of organic chlorides from model naphtha.The adsorption performance and regeneration stability were investigated by static adsorption experiments.The morphologies,structural features,and physicochemical properties of the adsorbents were characterized by X-ray diffraction,Brunauer-Emmett-Teller analysis,NH3 temperature-programmed desorption,scanning electron microscopy,transmission electron microscopy,and pyridine adsorption infrared spectroscopy.The Mg/ZSM-5 zeolite adsorbent possessed a relatively high specific surface area and good metal dispersion and exhibited the best dechlorination and regeneration performance.The characterization results revealed that introduction of the metal exerted a significant influence on the acidic properties of the catalyst surface.A decrease in the ratio of Brønsted acidic sites to Lewis acidic sites and an increase in the amount of moderately acidic sites were confirmed to be responsible for the excellent adsorption performance of the Mg-modified ZSM-5 zeolite.Furthermore,the Langmuir adsorption isotherm model was applied to study the adsorption equilibrium and thermodynamics of the Mg/ZSM-5 adsorbent under mild conditions.The results revealed that the removal of 1,2-dichloroethane by the Mg/ZSM-5 adsorbent was endothermic,spontaneous,disordered,and primarily involved physical adsorption.
基金supported by the National Natural Science Foundation of China (21603023)the Petro China Innovation Foundation, China (2014D-5006-0501)~~
文摘In this study, phosphorus modification by trimethyl phosphate impregnation was employed to enhance the hydrothermal stability of nano‐sized HZSM‐5 zeolites. A parallel modification was studied by ammonium dihydrogen phosphate impregnation. The modified zeolites were subjected to steam treatment at 800 °C for 4 h (100% steam) and employed as catalysts for olefin catalyticcracking (OCC) of full‐range fluid catalytic cracking (FCC) gasoline. X‐ray diffraction, N2 physicaladsorption and NH3 temperature‐programmed desorption analysis indicated that, although significantimprovements to the hydrothermal stability of nano‐sized HZSM‐5 zeolites can be observedwhen adopting both phosphorus modification strategies, impregnation with trimethyl phosphatedisplays further enhancement of the hydrothermal stability. This is because higher structural crystallinityis retained, larger specific surface areas/micropore volumes form, and there are greaternumbers of surface acid sites. Reaction experiments conducted using a fixed‐bed micro‐reactor(catalyst/oil ratio = 4, time on stream = 4 s) showed OCC of full‐range FCC gasoline-under a fluidized‐bed reaction mode configuration-to be a viable solution for the olefin problem of FCC gasoline.This reaction significantly decreased the olefin content in the full‐range FCC gasoline feed, andspecifically heavy‐end olefins, by converting the olefins into value‐added C2–C4 olefins and aromatics.At the same time, sulfide content of the gasoline decreased via a non‐hydrodesulfurization process.Nano‐sized HZSM‐5 zeolites modified with trimethyl phosphate exhibited enhanced catalytic performance for OCC of full‐range FCC gasoline.
文摘Post-synthetic treatment of high-silica as-made ZSM-5 with organic template in the micropores was explored to reduce/remove the external surface acid density of ZSM-5. It is found that Na_2H_2 EDTA treatment can selectively remove the surface Al atoms, but generates new acid sites(likely silanol nests) on the external surface. H_3PO_4 treatment is unable to remove surface Al atoms, while small amount of P is left on the external surface, which effectively decreases the acid density. The catalytic performance of the resultant materials is evaluated in the methanol conversion reaction. H_3PO_4 treatment can effectively improve both the catalytic lifetime and the stability of propene selectivity.This occurs due to a combination of the increased tolerance to the external coke deposition and the depressed coking rate(reduced side reactions). Na_2H_2 EDTA treatment only prolongs the catalytic lifetime, resulting from the improved tolerance to the external coke deposition. Under the optimized H_3PO_4 treatment condition, the resultant ZSM-5 gives a catalytic lifetime of about 1.5 times longer than the precursor. Moreover, the propene selectivity is improved, showing a slight increasing trend until the deactivation.
基金financial support from the National Natural Science Foundation of China (21571080 and 52202253)the Natural Science Foundation of Jiangsu Province (BK20220914)+2 种基金Project funded by China Postdoctoral Science Foundation (2022M721593)the Jiangsu Funding Program for Excellent Postdoctoral Talent (2022ZB193)the financial support from International Center of Future Science,Jilin University,Changchun,P.R.China (ICFS Seed Funding for Young Researchers)。
文摘Since the electrode/electrolyte interface(EEI)is the main redox center of electrochemical processes,proper manipulation of the EEI microenvironment is crucial to stabilize interfacial behaviors.Here,a finger-paint method is proposed to enable quick physical modification of glass-fiber separator without complicated chemical technology to modulate EEI of bilateral electrodes for aqueous zinc-ion batteries(ZIBs).An elaborate biochar derived from Aspergillus Niger is exploited as the modification agent of EEI,in which the multi-functional groups assist to accelerate Zn^(2+)desolvation and create a hydrophobic environment to homogenize the deposition behavior of Zn anode.Importantly,the finger-paint interface on separator can effectively protect cathodes from abnormal capacity fluctuation and/or rapid attenuation induced by H_(2)O molecular on the interface,which is demonstrated in modified MnO_(2),V_(2)O_(5),and KMn HCF-based cells.The as-proposed finger-paint method opens a new idea of bilateral interface engineering to facilitate the access to the practical application of the stable zinc electrochemistry.
文摘生长抑制蛋白5(inhibitor of growth protein 5,ING5)是生长抑制蛋白家族的成员之一,参与调节细胞周期、细胞增殖和凋亡等多种生命活动。家蚕核型多角体病毒(Bombyx mori nucleopolyhedrovirus,BmNPV)侵染家蚕卵巢细胞BmN前后的蛋白质乙酰化修饰差异组学分析结果显示,BmN细胞中的ING5蛋白有3个赖氨酸残基位点(K136、K137和K154)的乙酰化修饰水平在BmNPV感染后显著下调。为了探究ING5乙酰化修饰对其功能的影响以及在BmNPV侵染过程中的调控作用机制,首先克隆了家蚕ING5基因,并将BmNPV感染后乙酰化修饰水平显著下调的赖氨酸(K)定点突变为谷氨酰胺(Q)以模拟乙酰化修饰,突变为精氨酸(R)以模拟去乙酰化修饰。然后构建瞬时表达载体并转染BmN细胞,结果显示ING5蛋白过表达具有显著抑制细胞活力的作用,而ING5乙酰化修饰则可以显著提高细胞活力。进一步研究发现,过表达ING5蛋白具有显著促细胞凋亡作用,而ING5乙酰化修饰则显著抑制细胞凋亡。酵母双杂交试验结果显示,野生型ING5与凋亡相关蛋白P53可以互作,但ING5的乙酰化修饰影响了该互作关系;同时还发现ING5的乙酰化可显著降低P53蛋白稳定性。上述结果表明,家蚕ING5可能通过P53依赖的方式参与细胞凋亡调控,但K136、K137和K154位点的乙酰化修饰改变了ING5与P53的相互作用,进而影响细胞凋亡。研究结果将为深入解析家蚕ING5家族蛋白调控BmNPV侵染的作用机制提供试验依据,同时也可为家蚕的抗病毒育种提供新的理论依据。