Converting carbohydrates into 5-hydroxymethylfurfural(5-HMF) is an attractive and promising route for value-added utilization of agricultural and forestry biomass resource. As an important platform compound, 5-HMF pos...Converting carbohydrates into 5-hydroxymethylfurfural(5-HMF) is an attractive and promising route for value-added utilization of agricultural and forestry biomass resource. As an important platform compound, 5-HMF possesses high active furan structure with hydroxymethyl and aldehyde group for production of various bio-chemicals and materials, meanwhile, which suffer from low stability and poor yield during the industrial biorefinery process. Hence, selective production of 5-HMF with high-yield and low-cost has attracted extensive attention from scientific and industrial researchers. This review sorted and described the latest advanced research on solvent and catalyst system, as well as energy field effect for production of 5-HMF with different feedstock in detail, emphatically discussing the solvent effect and its synergistic effect with other aspects. Besides, the future prospects and challenges for production of 5-HMF from carbohydrates were also presented, which provide a profound insight into industrial 5-HMF process with economic and environmental feature.展开更多
With the continuous improvement of solar energy production capacity,how to effectively use the electricity generated by renewable solar energy for electrochemical conversion of biomass is a hot topic.Electrochemical c...With the continuous improvement of solar energy production capacity,how to effectively use the electricity generated by renewable solar energy for electrochemical conversion of biomass is a hot topic.Electrochemical conversion of 5-hydroxymethylfurfural(HMF)to biofuels and value-added oxygenated commodity chemicals provides a promising and alternative pathway to convert re-newable electricity into chemicals.Although nickel-based eletrocatalysts are well-known for HMF oxidation,their relatively low intrinsic activity,poor conductivity and stability still limit the poten-tial applications.Here,we report the fabrication of a freestanding nickel-based electrode,in which Ni(OH)_(2) species were in-situ constructed on Ni foam(NF)support using a facile ac-id-corrosion-induced strategy.The Ni(OH)2/NF electrocatalyst exhibits stable and efficient electro-chemical HMF oxidation into 2,5-furandicarboxylic acid(FDCA)with HMF conversion close to 100% with high Faraday efficiency.In-situ formation strategy results in a compact interface between Ni(OH)_(2) and NF,which contributes to good conductivity and stability during electrochemical reac-tions.The superior performance benefits from dynamic cyclic evolution of Ni(OH)_(2) to NiOOH,which acts as the reactive species for HMF oxidation to FDCA.A scaled-up device based on a continu-ous-flow electrolytic cell was also established,giving stable operation with a high FDCA production rate of 27 mg h^(-1)cm^(−2).This job offers a straightforward,economical,and scalable design strategy to design efficient and durable catalysts for electrochemical conversion of valuable chemicals.展开更多
2,5-Furandicarboxylic acid(FDCA)is a promising biomass-derived polymeric monomer that serves as an attractive alternative to terephthalic acid derived from fossil resources.However,the green and efficient production o...2,5-Furandicarboxylic acid(FDCA)is a promising biomass-derived polymeric monomer that serves as an attractive alternative to terephthalic acid derived from fossil resources.However,the green and efficient production of FDCA through the oxidation of 5-hydroxymethylfurfural(HMF)and its derivatives is still rudimentary under base-free conditions.In this work,oxygen-vacancy-rich Mn Oxwas prepared and displayed a strong adsorption and anchoring ability to Ru species that mainly exposed the(210)plane of RuO_(2),bringing about highly dispersed and active interfacial Ru-O-Mn structures.Experimental results and density functional theory calculations confirm that these above features greatly facilitate the adsorption/activation of oxygen and the dehydrogenation-oxidation of HMF/5-methoxymethylfurfural(MMF),which enables an efficient FDCA production under base-free and mild conditions.Notably,a desirable FDCA yield of 86.56%was still obtained from concentrated HMF(10 wt%)under base-free conditions over oxygen-vacancy-rich Mn Oxsupported Ru Ox(1.0 MPaO_(2),120℃,6 h).This work delineates a facile catalyst preparation strategy for HMF/MMF oxidation,and might open a new avenue for the green synthesis of FDCA under base-free conditions.展开更多
Highly-efficient oxidation of 5-hydroxymethylfurtural(HMF) to 2,5-furandicarboxylic acid(FDCA) at low temperature with air as the oxidant is still challenging.Herein,inspired by the respirato ry electron transport cha...Highly-efficient oxidation of 5-hydroxymethylfurtural(HMF) to 2,5-furandicarboxylic acid(FDCA) at low temperature with air as the oxidant is still challenging.Herein,inspired by the respirato ry electron transport chain(ETC) of living cells mediated by electron carriers,we constructed artificial ETCs and transformed liquid flow fuel cells(LFFCs) to flexible reactors for efficient oxidation of HMF to produce FDCA under mild conditions.This LFFC reactor employed an electrodeposition modified nickel foam as an anode to promote HMF oxidation and(VO_(2))_(2)SO_(4) as a cathode electron carrier to facilitate the electron transfer to air.The reaction rate could be easily controlled by selecting the anode catalyst,adjusting the external loading and changing the cathodic electron carrier or oxidants.A maximal power density of 44.9 mW cm^(-2) at room temperature was achieved,while for FDCA production,short-circuit condition was preferred to achieve quick transfer of electrons.For a single batch operation with 0.1 M initial HMF,FDCA yield reached 97.1%.By fed-batch operation,FDCA concentration reached 144.5 g L^(-1) with a total yield of 96%.Ni^(2+)/Ni^(3+) redox couple was the active species mediating the electron transfer,while both experimental and DFT calculation results indicated that HMFCA pathway was the preferred reaction mechanism.展开更多
Biomass,derived from plant photosynthesis that captures carbon dioxide to form carbohydrates,offers vast renewable reserves.The electrooxidation of biomass,coupled with the hydrogen evolution reaction,enables the simu...Biomass,derived from plant photosynthesis that captures carbon dioxide to form carbohydrates,offers vast renewable reserves.The electrooxidation of biomass,coupled with the hydrogen evolution reaction,enables the simultaneous production of biomass-based plastic monomers and green hydrogen,attracting significant scholarly interest.However,ambiguity remains regarding the adsorption mechanism at the catalyst surface(Langmuir-Hinshelwood or Eley-Rideal)and the adsorbed substrate groups.To address this,we prepared a Ni/Co electrode for the electrooxidation of 5-hydroxymethylfurfural(HMF)into 2,5-furandicarboxylic acid(FDCA)through a corrosion reaction and electro-reduction pathway.HMF conversion reached 100.00%,FDCA yield reached 96.82%,and Faradic efficiency(FE)reached 92.14%.Meaningfully,utilizing in-situ spectroscopy and electrochemical methods,this work provided valuable insights into active sites and catalyst surface adsorption.展开更多
High-efficient production of 5-hydroxymethylfurfural(HMF),a“sleeping giant”in sustainable chemistry,from cellulose depends significantly on the effective separation of cellulose from lignocellulosic biomass.Herein,w...High-efficient production of 5-hydroxymethylfurfural(HMF),a“sleeping giant”in sustainable chemistry,from cellulose depends significantly on the effective separation of cellulose from lignocellulosic biomass.Herein,we report the fractional separation of wheat straw cellulose(WSC)from wheat straw under solvothermal conditions using a mixed solvent of γ-valerolactone(GVL)and H_(2)O as the separating solvent,wherein the impacts of fractional separation parameters(solvent composition,temperature,and time)on removals of lignin and hemicellulose as well as purity and recovery of cellulose were studied by a Box-Behnken Design of response surface method.The optimization of the solvothermal parameters enabled an optimal fractional separation condition(V_(GVL):~60.0%,T:205℃,t:~1.7 h)that led to a higher purity(89.4%)and recovery(86.7%)of cellulose in WSC.A further correlation of the removals of lignin and hemicellulose as well as purity and recovery of cellulose with the yield of HMF excluded an independent influence of the above factors.Instead,a comprehensive contribution of high fractional separation efficiency(defined as the product of cellulose purity and recovery)and low crystallinity of WSC was found to improve the HMF yield.However,the heat-and freeze-dryings of WSC after the solvothermal separation were found to lower the HMF molar yield because it re-improved the crystallinity of WSC.A high HMF molar yield of 58.6%was achieved after reacting wet-WSC in a mixed solvent of 1,4-dioxane and H_(2)O at 180℃for 20 min,which was 1.5 fold higher than that from microcrystalline cellulose.This work highlights the importance of enhancing the fractional separation efficiency of cellulose from lignocellulosic biomass while avoiding the drying process for future HMF biorefinery.展开更多
Renewable resources based polymers provides a sustainable alternative to petroleum derived polymeric materials.As a part of our series on synthesis of vanillin based renewable polymers,we report the synthesis of poly(...Renewable resources based polymers provides a sustainable alternative to petroleum derived polymeric materials.As a part of our series on synthesis of vanillin based renewable polymers,we report the synthesis of poly(hydrovanilloin-furfural)[poly(HVL-Fur)]and poly(hydrovanilloin–5-hydromethylfurfural)[poly(HVL-5-HMF)].Vanillin was dimerized to a mixtures of meso/DL-hydrovanilloins with 94%meso product by electrochemical reductive coupling in aqueous sodium hydroxide using lead electrodes in quantitative yield.Then sodium hydroxide catalyzed condensation of hydrovanilloin with furfural in water at 80℃for 72 h was used to synthesize poly(HVL-Fur)with Mw=8600 g mol^(−1),PDI=1.28 in 78%yield.Similarly,condensation of hydrovanilloin with 5-hydroxymethylfurfural at 80℃for 48 h produced poly(HVL-5-HMF)with Mw=12,100 g mol−1,PDI=1.27 in 68%yield.poly(HVL-Fur)and poly(HVL-5-HMF)showed similar Tg values of 59℃and 60℃,respectively;whereas melting behaviors are dissimilar with Tm 171℃–173℃and 148℃–182℃,respectively.展开更多
[Objectives]To explore the effect of storage time on pH and 5-hydroxymethylfurfural content in Jiulongteng honey.[Methods]The pH of Jiulongteng honey was determined by neutralization titration with sodium hydroxide st...[Objectives]To explore the effect of storage time on pH and 5-hydroxymethylfurfural content in Jiulongteng honey.[Methods]The pH of Jiulongteng honey was determined by neutralization titration with sodium hydroxide standard solution.The content of 5-hydroxymethylfurfural in Jiulongteng honey was determined by HPLC.Chromatographic conditions:ZORBAX SB-C 18 column(250 mm×4.6 mm,5μm)from Agilent Co.,Ltd.,acetonitrile-0.1%formic acid solution(5:95)as mobile phase,flow rate of 0.8 mL/min,5-hydroxymethylfurfural detection wavelength of 284 nm,guanosine detection wavelength of 254 nm.[Results]The pH of 12 batches of Jiulongteng honey was 3.70-3.84 in the new honey stage,3.92-4.05 in the old honey stage 1,and 4.25-4.53 in the old honey stage 2;5-hydroxymethylfurfural was not detected in the new honey stage,5-hydroxymethylfurfural was detected in FM-001 in the old honey stage 1,and 5-hydroxymethylfurfural was detected in most samples in the old honey stage 2.[Conclusions]The pH and 5-hydroxymethylfurfural content of 12 batches of Jiulongteng honey met the requirements within 3 years of storage.There was no 5-hydroxymethylfurfural in Jiulongteng honey,but with the extension of storage time,the detection amount of 5-hydroxymethylfurfural increased significantly even if Jiulongteng honey was stored at low temperature.Therefore,5-hydroxymethylfurfural can be used as an important indicator of honey freshness.展开更多
In this work,nickel foam supported CeO_(2)-modified CoBDC(BDC stands for terephthalic acid linker)metal-organic frameworks(NF/CoBDC@CeO_(2)) are prepared by hydrothermal and subsequent impregnation methods,which can b...In this work,nickel foam supported CeO_(2)-modified CoBDC(BDC stands for terephthalic acid linker)metal-organic frameworks(NF/CoBDC@CeO_(2)) are prepared by hydrothermal and subsequent impregnation methods,which can be further transformed to NF/CoOOH@CeO_(2) by reconstruction during the electrocatalytic test.The obtained NF/CoOOH@CeO_(2) exhibits excellent performance in electrocatalytic oxidation of 5-hydroxymethylfurfural(HMF) because the introduction of CeO_(2) can optimize the electronic structure of the heterointerface and accelerate the accumulation of ^(*)OH.It requires only a potential of 1.290 V_(RHE) to provide a current density of 50 mA cm^(-2) in 1.0 M KOH+50 mM HMF,which is 222 mV lower than that required in 1,0 M KOH(1.512 V_(RHE)).In addition,density-functional theory calculation results demonstrate that CeO_(2) biases the electrons to the CoOOH side at the heterointerface and promotes the adsorption of ^(*)OH and ^(*)HMF on the catalyst surface,which lower the reaction energy barrier and facilitate the electrocata lytic oxidation process.展开更多
Electrocatalytic 5-hydroxymethylfurfural oxidation reaction(HMFOR)provides a promising strategy to convert biomass derivative to highvalue-added chemicals.Herein,a cascade strategy is proposed to construct Pd-NiCo_(2)...Electrocatalytic 5-hydroxymethylfurfural oxidation reaction(HMFOR)provides a promising strategy to convert biomass derivative to highvalue-added chemicals.Herein,a cascade strategy is proposed to construct Pd-NiCo_(2)O_(4)electrocatalyst by Pd loading on Ni-doped Co3O4 and for highly active and stable synergistic HMF oxidation.An elevated current density of 800 mA cm^(-2)can be achieved at 1.5 V,and both Faradaic efficiency and yield of 2,5-furandicarboxylic acid remained close to 100%over 10 consecutive electrolysis.Experimental and theoretical results unveil that the introduction of Pd atoms can modulate the local electronic structure of Ni/Co,which not only balances the competitive adsorption of HMF and OH-species,but also promote the active Ni^(3+)species formation,inducing high indirect oxidation activity.We have also discovered that Ni incorporation facilitates the Co2+pre-oxidation and electrophilic OH*generation to contribute direct oxidation process.This work provides a new approach to design advanced electrocatalyst for biomass upgrading.展开更多
The highly selective hydrogenation of 5-hydroxymethylfurfural to 2,5-dihydroxymethylfuran is an important reaction in the field of biomass hydrogenation,because it is a bridge between biomass resources and chemical in...The highly selective hydrogenation of 5-hydroxymethylfurfural to 2,5-dihydroxymethylfuran is an important reaction in the field of biomass hydrogenation,because it is a bridge between biomass resources and chemical industry.Here,we precisely constructed carbon nitride supported Pd-based catalysts by a simple impregnation-reduction method.By changing the reduction temperature,catalysts with different oxidation state could be precisely constructed.Moreover,the important correlation between the ratio of Pd^(0)/Pd^(2+)and catalytic activity is revealed during the selective hydrogenation of HMF.The Pd/g—C_(3)N_(4)—300 catalyst with a Pd^(0)/Pd^(2+)ratio of 3/2 showed the highest catalytic activity,which could get 96.9%5-hydroxymethylfurfural conversion and 90.3%2,5-dihydroxymethylfuran selectivity.Further density functional theory calculation revealed that the synergistic effect between Pd0and Pd2+in Pd/g—C_(3)N_(4)—300 system could boost the adsorption of the substrate and the dissociation of hydrogen.In this work,we highlight the important correlation between metal oxidation state and catalytic activity,which provides valuable insights for the rational design of precious metal catalysts for hydrogenation reactions.展开更多
The electrochemical coupling of biomass oxidation and nitrogen conversion presents a potential strategy for high value-added chemicals and nitrogen cycling.Herein,in this work,CuO/Co_(3)O_(4)with heterogeneous interfa...The electrochemical coupling of biomass oxidation and nitrogen conversion presents a potential strategy for high value-added chemicals and nitrogen cycling.Herein,in this work,CuO/Co_(3)O_(4)with heterogeneous interface is successfully constructed as a bifunctional catalyst for the electrooxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid and the electroreduction of nitrate to ammonia(NH_(3)).The open-circuit potential spontaneous experiment shows that more 5-hydroxymethylfurfural molecules are adsorbed in the Helmholtz layer of the CuO/Co_(3)O_(4)composite,which certifies that the CuO/Co_(3)O_(4)heterostructure is conducive to the kinetic adsorption of 5-hydroxymethylfurfural.In situ electrochemical impedance spectroscopy further shows that CuO/Co_(3)O_(4)has faster reaction kinetics and lower reaction potential in oxygen evolution reaction and 5-hydroxymethylfurfural electrocatalytic oxidation.Moreover,CuO/Co_(3)O_(4)also has a good reduction effect on NO_(3)^(-).The ex-situ Raman spectroscopy shows that under the reduction potential,the metal oxide is reduced,and the generated Cu_(2)O can be used as a new active site for the reaction to promote the electrocatalytic conversion of NO_(3)^(-)to NH_(3) synthesis.This work provides valuable guidance for the synthesis of value-added chemicals by 5-hydroxymethylfurfural electrocatalytic oxidation coupled with NO_(3)^(-)while efficiently producing NH_(3).展开更多
A natural attapulgite (ATP)‐based catalyst, sulfated In2O3‐ATP (SO42-/In2O3‐ATP), was obtained by an impregnation‐calcination method and was used to efficiently and selectively produce the useful platform chem...A natural attapulgite (ATP)‐based catalyst, sulfated In2O3‐ATP (SO42-/In2O3‐ATP), was obtained by an impregnation‐calcination method and was used to efficiently and selectively produce the useful platform chemical 5‐hydroxymethylfurfural (HMF) from hexoses. Some important reaction param‐eters were studied, revealing that Lewis and Br-nsted acid sites on SO42-/In2O3‐ATP catalyze glu‐cose isomerization and fructose dehydration. The yields of HMF from glucose and fructose were 40.2%and 46.2%, respectively, using the optimal conditions of 180℃ for 60 min with 10 wt%of solid acid catalyst in a mixture of γ‐valerolactone‐water (9:1).展开更多
Conversion of cellulose into platform chemical 5-hydroxymethylfurfural (HMF) in water-tetrahydrofuran (THF) co-solvents under acidic condition was studied. 38.6% of HMF was obtained with low cellulose concentratio...Conversion of cellulose into platform chemical 5-hydroxymethylfurfural (HMF) in water-tetrahydrofuran (THF) co-solvents under acidic condition was studied. 38.6% of HMF was obtained with low cellulose concentration of 2.4wt%, but levulinic acid (LA) and solid humins became the main products with high cellulose concentration. The soluble byproducts were analyzed by high performance liquid chromatography/multiple stage tandem mass spec-trometry, and chemicals with formula of C9H16O4、 C10H14O4、 C11H12O4、C12H10O5 and C12H16O8 were detected. THF could participate in the reaction via ring-opening into 1,4-butanediol followed by esterification with LA into C9H16O4 or etherification with HMF into C10H14O4. C11H12O4 was formed by esterification of HMF with LA, C12H10O5 was formed by self-etherification of HMF, while C12H16O8 was formed by acetalization of HMF with glucose. Self-etherification of HMF and etherification of HMF with 1,4-butanediol were identified as two main side reactions.展开更多
The conversion of cellulose to 5-hydroxymethylfurfural (HMF) has been investigated by a one-pot consecutive reaction. At first, cellulose was depolymerised into glucose via a fast degradation of cellulose in molten ...The conversion of cellulose to 5-hydroxymethylfurfural (HMF) has been investigated by a one-pot consecutive reaction. At first, cellulose was depolymerised into glucose via a fast degradation of cellulose in molten ZnCI~ in the presence of hydrochloric acid, and the yield of glucose is 75% in 120 s at reaction temperature of 95 ℃. Then, DMSO was used as solvent and different kinds of metal chloride were added as catalysts, and the conversion was carried out continuously at 110-130 ℃ for 0.5-4 h. The yield of HMF was 53% when CrC13 were used as catalyst. The one-pot two steps conversion was carried out at atmosphere pressure, and it is a simple route to prepare HMF from lignocellulosic feedstock on a large scale.展开更多
The hydrogenolysis of carbon–oxygen bonds is an important model reaction in upgrading biomass‐derived furanic compounds to transportation fuels.One of these model reactions,namelyconversion of5‐hydroxymethylfurfura...The hydrogenolysis of carbon–oxygen bonds is an important model reaction in upgrading biomass‐derived furanic compounds to transportation fuels.One of these model reactions,namelyconversion of5‐hydroxymethylfurfural(HMF)to the gasoline additive2,5‐dimethylfuran(DMF),isespecially attractive.In this study,bimetallic Cu‐Co catalysts supported on CeO2,ZrO2,and Al2O3were used for the selective hydrogenolysis of HMF to DMF.The structures of the fresh and usedcatalysts were studied using X‐ray diffraction,the Brunauer‐Emmett‐Teller method,transmissionelectron microscopy,temperature‐programmed reduction by H2,temperature‐programmed desorptionof NH3,and CHNS analysis.The structures were correlated with the catalytic activities.TheCu‐Co/CeO2catalyst produced mainly2,5‐bis(hydroxymethyl)furan via reduction of C=O bonds onlarge Cu particles.The Cu‐Co/Al2O3catalyst gave the best selectivity for DMF,as a result of a combinationof highly dispersed Cu,mixed copper–cobalt oxides,and suitable weak acidic sites.Cu‐Co/ZrO2had low selectivity for DMF and produced a combination of variousover‐hydrogenolysis products,including2,5‐dimethyltetrahydrofuran and5,5‐oxybis(methylene)‐bis(2‐methylfuran),because of the presence of strong acidic sites.The reaction pathways and effectsof various operating parameters,namely temperature,H2pressure,and time,were studied to enableoptimization of the selective conversion of HMF to DMF over the Cu‐Co/Al2O3catalyst.展开更多
Sulfated porous carbon (PC-SO3H) catalyst was successfully synthesized from one-pot treatment of porous polydivinylbenzene in H2SO4 at 250 ℃, which exhibited very good catalytic performances in the production of 5-...Sulfated porous carbon (PC-SO3H) catalyst was successfully synthesized from one-pot treatment of porous polydivinylbenzene in H2SO4 at 250 ℃, which exhibited very good catalytic performances in the production of 5-hydroxymethylfurfural from fructose.展开更多
A mild and simple process for the effective oxidation of 5-hydroxymethylfurfural(HMF) into 2,5-diformylfuran(DFF) has been developed using Na NO2 as the oxidant. Some important reaction parameters were investigate...A mild and simple process for the effective oxidation of 5-hydroxymethylfurfural(HMF) into 2,5-diformylfuran(DFF) has been developed using Na NO2 as the oxidant. Some important reaction parameters were investigated to optimize the oxidation of HMF into DFF. It was found that the reaction solvent was very crucial for this reaction. Trifluoroacetic acid was the best solvent for the oxidation of HMF into DFF by Na NO2.Under the optimal reaction condition, almost quantitative HMF conversion and high DFF yield of 90.4% were obtained after 1 h at room temperature.展开更多
A low-cost and easily prepared manganese carbonate(Mn CO_3) has been synthesized for catalytic conversion of 5-hydroxymethylfurfural(5-HMF) to 2,5-diformylfuran(DFF). The properties and morphology of the manganese car...A low-cost and easily prepared manganese carbonate(Mn CO_3) has been synthesized for catalytic conversion of 5-hydroxymethylfurfural(5-HMF) to 2,5-diformylfuran(DFF). The properties and morphology of the manganese carbonate were measured by SEM,XRD,TGA,BET and XPS. In this method,no harsh reaction conditions were required,and it was a simple and green process for the oxidation of 5-HMF into DFF. To achieve an optimum DFF yield,different reaction conditions,including reaction temperature,reaction time,catalyst amount,and solvents were investigated. Results from the experiments indicated that the highest DFF yield of 86.9% was obtained at 120 °C under atmospheric oxygen pressure after 6h. Finally,Mn CO_3 could be used at least five times with considerable stability.展开更多
The development of high-efficiency and low-cost catalysts is very crucial for the MeerweinPonndorf-Verley (MPV) reduction of biomass-derived 5-hydroxymethylfurfural (HMF) into 2,5-dihydroxymethylfuran (DHMF). In this ...The development of high-efficiency and low-cost catalysts is very crucial for the MeerweinPonndorf-Verley (MPV) reduction of biomass-derived 5-hydroxymethylfurfural (HMF) into 2,5-dihydroxymethylfuran (DHMF). In this work, an amorphous and mesoporous zirconium phosphonate catalyst (Zr-DTMP), which is a zirconium-containing organic-inorganic nanohybrid, was successfully designed and synthesized by the simple assembly of zirconium tetrachloride (ZrCl4) and diethylene triaminepenta(methylene phosphonic acid)(DTMP). Satisfactorily, when Zr-DTMP was employed for the MPV reduction of HMF in the presence of 2-butanol (secBuOH), DHMF yield could be achieved as 96.5% in 3 h under a relatively mild reaction temperature of 140℃. Systematic investigations indicated that this high catalytic activity should be mainly due to the cooperative role of enhancive Lewis acid site (Zr4+) and Lewis base site (O2-) in activating the carbonyl group of HMF and dissociating the hydroxyl group of secBuOH, respectively. Additionally, Zr-DTMP showed excellent catalytic stability, when it was successively used 5 recycles, its surface characteristics and textural properties still remained almost unchanged, and so, the catalytic activity was not obviously affected. More interestingly, Zr-DTMP could also be applied for the selective reduction of other biomass-derived carbonyl compounds, such as 5-methylfurfural (MF), furfural (FF), levulinic acid (LA), ethyl levulinate (EL) and cyclohexanone (CHN), into the corresponding products with high yields, which is beneficial to the effective synthesis of various valuable bio-based chemicals.展开更多
基金supported by the National Nature Science Foundation of China (32222058, 32001274)the Youth Talent Support Program for Science & Technology Innovation of National Forestry and Grassland (2019132603) for financial support。
文摘Converting carbohydrates into 5-hydroxymethylfurfural(5-HMF) is an attractive and promising route for value-added utilization of agricultural and forestry biomass resource. As an important platform compound, 5-HMF possesses high active furan structure with hydroxymethyl and aldehyde group for production of various bio-chemicals and materials, meanwhile, which suffer from low stability and poor yield during the industrial biorefinery process. Hence, selective production of 5-HMF with high-yield and low-cost has attracted extensive attention from scientific and industrial researchers. This review sorted and described the latest advanced research on solvent and catalyst system, as well as energy field effect for production of 5-HMF with different feedstock in detail, emphatically discussing the solvent effect and its synergistic effect with other aspects. Besides, the future prospects and challenges for production of 5-HMF from carbohydrates were also presented, which provide a profound insight into industrial 5-HMF process with economic and environmental feature.
文摘With the continuous improvement of solar energy production capacity,how to effectively use the electricity generated by renewable solar energy for electrochemical conversion of biomass is a hot topic.Electrochemical conversion of 5-hydroxymethylfurfural(HMF)to biofuels and value-added oxygenated commodity chemicals provides a promising and alternative pathway to convert re-newable electricity into chemicals.Although nickel-based eletrocatalysts are well-known for HMF oxidation,their relatively low intrinsic activity,poor conductivity and stability still limit the poten-tial applications.Here,we report the fabrication of a freestanding nickel-based electrode,in which Ni(OH)_(2) species were in-situ constructed on Ni foam(NF)support using a facile ac-id-corrosion-induced strategy.The Ni(OH)2/NF electrocatalyst exhibits stable and efficient electro-chemical HMF oxidation into 2,5-furandicarboxylic acid(FDCA)with HMF conversion close to 100% with high Faraday efficiency.In-situ formation strategy results in a compact interface between Ni(OH)_(2) and NF,which contributes to good conductivity and stability during electrochemical reac-tions.The superior performance benefits from dynamic cyclic evolution of Ni(OH)_(2) to NiOOH,which acts as the reactive species for HMF oxidation to FDCA.A scaled-up device based on a continu-ous-flow electrolytic cell was also established,giving stable operation with a high FDCA production rate of 27 mg h^(-1)cm^(−2).This job offers a straightforward,economical,and scalable design strategy to design efficient and durable catalysts for electrochemical conversion of valuable chemicals.
基金the funding supported by the National Natural Science Foundation of China(22378338,22078275)the Natural Science Foundation of Fujian Province of China(2021H0009)the Fundamental Research Funds for the Central Universities(20720220065)。
文摘2,5-Furandicarboxylic acid(FDCA)is a promising biomass-derived polymeric monomer that serves as an attractive alternative to terephthalic acid derived from fossil resources.However,the green and efficient production of FDCA through the oxidation of 5-hydroxymethylfurfural(HMF)and its derivatives is still rudimentary under base-free conditions.In this work,oxygen-vacancy-rich Mn Oxwas prepared and displayed a strong adsorption and anchoring ability to Ru species that mainly exposed the(210)plane of RuO_(2),bringing about highly dispersed and active interfacial Ru-O-Mn structures.Experimental results and density functional theory calculations confirm that these above features greatly facilitate the adsorption/activation of oxygen and the dehydrogenation-oxidation of HMF/5-methoxymethylfurfural(MMF),which enables an efficient FDCA production under base-free and mild conditions.Notably,a desirable FDCA yield of 86.56%was still obtained from concentrated HMF(10 wt%)under base-free conditions over oxygen-vacancy-rich Mn Oxsupported Ru Ox(1.0 MPaO_(2),120℃,6 h).This work delineates a facile catalyst preparation strategy for HMF/MMF oxidation,and might open a new avenue for the green synthesis of FDCA under base-free conditions.
基金supported by the National Key R&D Program of China(2022YFA2105900)the National Natural Science Foundation of China(22178197)。
文摘Highly-efficient oxidation of 5-hydroxymethylfurtural(HMF) to 2,5-furandicarboxylic acid(FDCA) at low temperature with air as the oxidant is still challenging.Herein,inspired by the respirato ry electron transport chain(ETC) of living cells mediated by electron carriers,we constructed artificial ETCs and transformed liquid flow fuel cells(LFFCs) to flexible reactors for efficient oxidation of HMF to produce FDCA under mild conditions.This LFFC reactor employed an electrodeposition modified nickel foam as an anode to promote HMF oxidation and(VO_(2))_(2)SO_(4) as a cathode electron carrier to facilitate the electron transfer to air.The reaction rate could be easily controlled by selecting the anode catalyst,adjusting the external loading and changing the cathodic electron carrier or oxidants.A maximal power density of 44.9 mW cm^(-2) at room temperature was achieved,while for FDCA production,short-circuit condition was preferred to achieve quick transfer of electrons.For a single batch operation with 0.1 M initial HMF,FDCA yield reached 97.1%.By fed-batch operation,FDCA concentration reached 144.5 g L^(-1) with a total yield of 96%.Ni^(2+)/Ni^(3+) redox couple was the active species mediating the electron transfer,while both experimental and DFT calculation results indicated that HMFCA pathway was the preferred reaction mechanism.
基金the financial support from the National Natural Science Foundation of China(22072170)the Zhejiang Provincial Key Research and Development Program(2021C03170)the Ningbo Science and Technology Bureau(2019B10096)。
文摘Biomass,derived from plant photosynthesis that captures carbon dioxide to form carbohydrates,offers vast renewable reserves.The electrooxidation of biomass,coupled with the hydrogen evolution reaction,enables the simultaneous production of biomass-based plastic monomers and green hydrogen,attracting significant scholarly interest.However,ambiguity remains regarding the adsorption mechanism at the catalyst surface(Langmuir-Hinshelwood or Eley-Rideal)and the adsorbed substrate groups.To address this,we prepared a Ni/Co electrode for the electrooxidation of 5-hydroxymethylfurfural(HMF)into 2,5-furandicarboxylic acid(FDCA)through a corrosion reaction and electro-reduction pathway.HMF conversion reached 100.00%,FDCA yield reached 96.82%,and Faradic efficiency(FE)reached 92.14%.Meaningfully,utilizing in-situ spectroscopy and electrochemical methods,this work provided valuable insights into active sites and catalyst surface adsorption.
基金supported by the National Natural Science Foundation of China(22378277)the 111 project(B17030)the Basal Research Fund of the Central University(2016SCU04B06).
文摘High-efficient production of 5-hydroxymethylfurfural(HMF),a“sleeping giant”in sustainable chemistry,from cellulose depends significantly on the effective separation of cellulose from lignocellulosic biomass.Herein,we report the fractional separation of wheat straw cellulose(WSC)from wheat straw under solvothermal conditions using a mixed solvent of γ-valerolactone(GVL)and H_(2)O as the separating solvent,wherein the impacts of fractional separation parameters(solvent composition,temperature,and time)on removals of lignin and hemicellulose as well as purity and recovery of cellulose were studied by a Box-Behnken Design of response surface method.The optimization of the solvothermal parameters enabled an optimal fractional separation condition(V_(GVL):~60.0%,T:205℃,t:~1.7 h)that led to a higher purity(89.4%)and recovery(86.7%)of cellulose in WSC.A further correlation of the removals of lignin and hemicellulose as well as purity and recovery of cellulose with the yield of HMF excluded an independent influence of the above factors.Instead,a comprehensive contribution of high fractional separation efficiency(defined as the product of cellulose purity and recovery)and low crystallinity of WSC was found to improve the HMF yield.However,the heat-and freeze-dryings of WSC after the solvothermal separation were found to lower the HMF molar yield because it re-improved the crystallinity of WSC.A high HMF molar yield of 58.6%was achieved after reacting wet-WSC in a mixed solvent of 1,4-dioxane and H_(2)O at 180℃for 20 min,which was 1.5 fold higher than that from microcrystalline cellulose.This work highlights the importance of enhancing the fractional separation efficiency of cellulose from lignocellulosic biomass while avoiding the drying process for future HMF biorefinery.
基金funded by United States National Science Foundation(NSF)Grant HRD-1036593USDA-NIFA Grant 12684238:Award No.2020-65209-31474United States Department of Energy Grant DE-SC0023345.
文摘Renewable resources based polymers provides a sustainable alternative to petroleum derived polymeric materials.As a part of our series on synthesis of vanillin based renewable polymers,we report the synthesis of poly(hydrovanilloin-furfural)[poly(HVL-Fur)]and poly(hydrovanilloin–5-hydromethylfurfural)[poly(HVL-5-HMF)].Vanillin was dimerized to a mixtures of meso/DL-hydrovanilloins with 94%meso product by electrochemical reductive coupling in aqueous sodium hydroxide using lead electrodes in quantitative yield.Then sodium hydroxide catalyzed condensation of hydrovanilloin with furfural in water at 80℃for 72 h was used to synthesize poly(HVL-Fur)with Mw=8600 g mol^(−1),PDI=1.28 in 78%yield.Similarly,condensation of hydrovanilloin with 5-hydroxymethylfurfural at 80℃for 48 h produced poly(HVL-5-HMF)with Mw=12,100 g mol−1,PDI=1.27 in 68%yield.poly(HVL-Fur)and poly(HVL-5-HMF)showed similar Tg values of 59℃and 60℃,respectively;whereas melting behaviors are dissimilar with Tm 171℃–173℃and 148℃–182℃,respectively.
基金Supported by Young and Middle-aged Teachers Scientific Research Basic Ability Improvement Project in Universities of Guangxi in 2020 (2020 KY07040)School-level Scientific Research Project of Guangxi University of Chinese Medicine in 2021 (2021MS010).
文摘[Objectives]To explore the effect of storage time on pH and 5-hydroxymethylfurfural content in Jiulongteng honey.[Methods]The pH of Jiulongteng honey was determined by neutralization titration with sodium hydroxide standard solution.The content of 5-hydroxymethylfurfural in Jiulongteng honey was determined by HPLC.Chromatographic conditions:ZORBAX SB-C 18 column(250 mm×4.6 mm,5μm)from Agilent Co.,Ltd.,acetonitrile-0.1%formic acid solution(5:95)as mobile phase,flow rate of 0.8 mL/min,5-hydroxymethylfurfural detection wavelength of 284 nm,guanosine detection wavelength of 254 nm.[Results]The pH of 12 batches of Jiulongteng honey was 3.70-3.84 in the new honey stage,3.92-4.05 in the old honey stage 1,and 4.25-4.53 in the old honey stage 2;5-hydroxymethylfurfural was not detected in the new honey stage,5-hydroxymethylfurfural was detected in FM-001 in the old honey stage 1,and 5-hydroxymethylfurfural was detected in most samples in the old honey stage 2.[Conclusions]The pH and 5-hydroxymethylfurfural content of 12 batches of Jiulongteng honey met the requirements within 3 years of storage.There was no 5-hydroxymethylfurfural in Jiulongteng honey,but with the extension of storage time,the detection amount of 5-hydroxymethylfurfural increased significantly even if Jiulongteng honey was stored at low temperature.Therefore,5-hydroxymethylfurfural can be used as an important indicator of honey freshness.
基金National Key Research and Development Program of China (2021YFB3500700)National Natural Science Foundation of China (51802015)Fundamental Research Funds for the Central Universities (FRF-EYIT-23-07)。
文摘In this work,nickel foam supported CeO_(2)-modified CoBDC(BDC stands for terephthalic acid linker)metal-organic frameworks(NF/CoBDC@CeO_(2)) are prepared by hydrothermal and subsequent impregnation methods,which can be further transformed to NF/CoOOH@CeO_(2) by reconstruction during the electrocatalytic test.The obtained NF/CoOOH@CeO_(2) exhibits excellent performance in electrocatalytic oxidation of 5-hydroxymethylfurfural(HMF) because the introduction of CeO_(2) can optimize the electronic structure of the heterointerface and accelerate the accumulation of ^(*)OH.It requires only a potential of 1.290 V_(RHE) to provide a current density of 50 mA cm^(-2) in 1.0 M KOH+50 mM HMF,which is 222 mV lower than that required in 1,0 M KOH(1.512 V_(RHE)).In addition,density-functional theory calculation results demonstrate that CeO_(2) biases the electrons to the CoOOH side at the heterointerface and promotes the adsorption of ^(*)OH and ^(*)HMF on the catalyst surface,which lower the reaction energy barrier and facilitate the electrocata lytic oxidation process.
基金financially supported by Key Research and Development Projects of Sichuan Province (2023YFG0222)“Tianfu Emei” Science and Technology Innovation Leader Program in Sichuan Province (2021)+3 种基金University of Electronic Science and Technology of China Talent Start-up Funds (A1098 5310 2360 1208)the Youth Innovation Promotion Association of CAS (2020458)National Natural Science Foundation of China (21464015, 21472235, 52122212, 12274391, 223210001)Beijing Natural Science Foundation (IS23045)
文摘Electrocatalytic 5-hydroxymethylfurfural oxidation reaction(HMFOR)provides a promising strategy to convert biomass derivative to highvalue-added chemicals.Herein,a cascade strategy is proposed to construct Pd-NiCo_(2)O_(4)electrocatalyst by Pd loading on Ni-doped Co3O4 and for highly active and stable synergistic HMF oxidation.An elevated current density of 800 mA cm^(-2)can be achieved at 1.5 V,and both Faradaic efficiency and yield of 2,5-furandicarboxylic acid remained close to 100%over 10 consecutive electrolysis.Experimental and theoretical results unveil that the introduction of Pd atoms can modulate the local electronic structure of Ni/Co,which not only balances the competitive adsorption of HMF and OH-species,but also promote the active Ni^(3+)species formation,inducing high indirect oxidation activity.We have also discovered that Ni incorporation facilitates the Co2+pre-oxidation and electrophilic OH*generation to contribute direct oxidation process.This work provides a new approach to design advanced electrocatalyst for biomass upgrading.
基金supported by the National Key Research and Development Program of China(2021YFA1500500)。
文摘The highly selective hydrogenation of 5-hydroxymethylfurfural to 2,5-dihydroxymethylfuran is an important reaction in the field of biomass hydrogenation,because it is a bridge between biomass resources and chemical industry.Here,we precisely constructed carbon nitride supported Pd-based catalysts by a simple impregnation-reduction method.By changing the reduction temperature,catalysts with different oxidation state could be precisely constructed.Moreover,the important correlation between the ratio of Pd^(0)/Pd^(2+)and catalytic activity is revealed during the selective hydrogenation of HMF.The Pd/g—C_(3)N_(4)—300 catalyst with a Pd^(0)/Pd^(2+)ratio of 3/2 showed the highest catalytic activity,which could get 96.9%5-hydroxymethylfurfural conversion and 90.3%2,5-dihydroxymethylfuran selectivity.Further density functional theory calculation revealed that the synergistic effect between Pd0and Pd2+in Pd/g—C_(3)N_(4)—300 system could boost the adsorption of the substrate and the dissociation of hydrogen.In this work,we highlight the important correlation between metal oxidation state and catalytic activity,which provides valuable insights for the rational design of precious metal catalysts for hydrogenation reactions.
基金the support received from the National Natural Science Foundation of China(Grant No.22372012,22261160640,and 22002009)the Natural Science Foundation of Hunan Province(Grant No.2023JJ20037 and 2021JJ40565)the Scientific Research Project of Hunan Provincial Department of Education(Grant No.22B0293)
文摘The electrochemical coupling of biomass oxidation and nitrogen conversion presents a potential strategy for high value-added chemicals and nitrogen cycling.Herein,in this work,CuO/Co_(3)O_(4)with heterogeneous interface is successfully constructed as a bifunctional catalyst for the electrooxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid and the electroreduction of nitrate to ammonia(NH_(3)).The open-circuit potential spontaneous experiment shows that more 5-hydroxymethylfurfural molecules are adsorbed in the Helmholtz layer of the CuO/Co_(3)O_(4)composite,which certifies that the CuO/Co_(3)O_(4)heterostructure is conducive to the kinetic adsorption of 5-hydroxymethylfurfural.In situ electrochemical impedance spectroscopy further shows that CuO/Co_(3)O_(4)has faster reaction kinetics and lower reaction potential in oxygen evolution reaction and 5-hydroxymethylfurfural electrocatalytic oxidation.Moreover,CuO/Co_(3)O_(4)also has a good reduction effect on NO_(3)^(-).The ex-situ Raman spectroscopy shows that under the reduction potential,the metal oxide is reduced,and the generated Cu_(2)O can be used as a new active site for the reaction to promote the electrocatalytic conversion of NO_(3)^(-)to NH_(3) synthesis.This work provides valuable guidance for the synthesis of value-added chemicals by 5-hydroxymethylfurfural electrocatalytic oxidation coupled with NO_(3)^(-)while efficiently producing NH_(3).
基金supported by the Fundamental Research Funds for the Central Universities (TD2011-11,BLYJ201519)Beijing Higher Education Young Elite Teacher Project (YETP0765)+2 种基金National Natural Science Foundation of China (31170556)New Century Excellent Talents in University (NCET-13-0671)State Forestry Administration of China (201204803)~~
文摘A natural attapulgite (ATP)‐based catalyst, sulfated In2O3‐ATP (SO42-/In2O3‐ATP), was obtained by an impregnation‐calcination method and was used to efficiently and selectively produce the useful platform chemical 5‐hydroxymethylfurfural (HMF) from hexoses. Some important reaction param‐eters were studied, revealing that Lewis and Br-nsted acid sites on SO42-/In2O3‐ATP catalyze glu‐cose isomerization and fructose dehydration. The yields of HMF from glucose and fructose were 40.2%and 46.2%, respectively, using the optimal conditions of 180℃ for 60 min with 10 wt%of solid acid catalyst in a mixture of γ‐valerolactone‐water (9:1).
基金This work was supported by the National Basic Research Program of China (No.2012CB215304), the National Natural Science Foundation of China (No.51376185 and No.51161140331), and the Natural Science Foundation of Guangdong Province (No.S2013010011612).
文摘Conversion of cellulose into platform chemical 5-hydroxymethylfurfural (HMF) in water-tetrahydrofuran (THF) co-solvents under acidic condition was studied. 38.6% of HMF was obtained with low cellulose concentration of 2.4wt%, but levulinic acid (LA) and solid humins became the main products with high cellulose concentration. The soluble byproducts were analyzed by high performance liquid chromatography/multiple stage tandem mass spec-trometry, and chemicals with formula of C9H16O4、 C10H14O4、 C11H12O4、C12H10O5 and C12H16O8 were detected. THF could participate in the reaction via ring-opening into 1,4-butanediol followed by esterification with LA into C9H16O4 or etherification with HMF into C10H14O4. C11H12O4 was formed by esterification of HMF with LA, C12H10O5 was formed by self-etherification of HMF, while C12H16O8 was formed by acetalization of HMF with glucose. Self-etherification of HMF and etherification of HMF with 1,4-butanediol were identified as two main side reactions.
文摘The conversion of cellulose to 5-hydroxymethylfurfural (HMF) has been investigated by a one-pot consecutive reaction. At first, cellulose was depolymerised into glucose via a fast degradation of cellulose in molten ZnCI~ in the presence of hydrochloric acid, and the yield of glucose is 75% in 120 s at reaction temperature of 95 ℃. Then, DMSO was used as solvent and different kinds of metal chloride were added as catalysts, and the conversion was carried out continuously at 110-130 ℃ for 0.5-4 h. The yield of HMF was 53% when CrC13 were used as catalyst. The one-pot two steps conversion was carried out at atmosphere pressure, and it is a simple route to prepare HMF from lignocellulosic feedstock on a large scale.
文摘The hydrogenolysis of carbon–oxygen bonds is an important model reaction in upgrading biomass‐derived furanic compounds to transportation fuels.One of these model reactions,namelyconversion of5‐hydroxymethylfurfural(HMF)to the gasoline additive2,5‐dimethylfuran(DMF),isespecially attractive.In this study,bimetallic Cu‐Co catalysts supported on CeO2,ZrO2,and Al2O3were used for the selective hydrogenolysis of HMF to DMF.The structures of the fresh and usedcatalysts were studied using X‐ray diffraction,the Brunauer‐Emmett‐Teller method,transmissionelectron microscopy,temperature‐programmed reduction by H2,temperature‐programmed desorptionof NH3,and CHNS analysis.The structures were correlated with the catalytic activities.TheCu‐Co/CeO2catalyst produced mainly2,5‐bis(hydroxymethyl)furan via reduction of C=O bonds onlarge Cu particles.The Cu‐Co/Al2O3catalyst gave the best selectivity for DMF,as a result of a combinationof highly dispersed Cu,mixed copper–cobalt oxides,and suitable weak acidic sites.Cu‐Co/ZrO2had low selectivity for DMF and produced a combination of variousover‐hydrogenolysis products,including2,5‐dimethyltetrahydrofuran and5,5‐oxybis(methylene)‐bis(2‐methylfuran),because of the presence of strong acidic sites.The reaction pathways and effectsof various operating parameters,namely temperature,H2pressure,and time,were studied to enableoptimization of the selective conversion of HMF to DMF over the Cu‐Co/Al2O3catalyst.
基金supported by the National Natural Science Foundation of China (U1162201)the Graduate Innovation Fund of Jilin University (20121051)
文摘Sulfated porous carbon (PC-SO3H) catalyst was successfully synthesized from one-pot treatment of porous polydivinylbenzene in H2SO4 at 250 ℃, which exhibited very good catalytic performances in the production of 5-hydroxymethylfurfural from fructose.
基金supported by the National Natural Science Foundation of China(21272065)Scientific Research Fund of Hunan Provincial Education Department(13C562+2 种基金15C0816)Outstanding Youth Project of Hunan Provincial Education Department(15B134)the funding offered by China Scholarship Council(201506720018)
文摘A mild and simple process for the effective oxidation of 5-hydroxymethylfurfural(HMF) into 2,5-diformylfuran(DFF) has been developed using Na NO2 as the oxidant. Some important reaction parameters were investigated to optimize the oxidation of HMF into DFF. It was found that the reaction solvent was very crucial for this reaction. Trifluoroacetic acid was the best solvent for the oxidation of HMF into DFF by Na NO2.Under the optimal reaction condition, almost quantitative HMF conversion and high DFF yield of 90.4% were obtained after 1 h at room temperature.
基金supported by the Natural Science Foundation of Tianjin (No. 16JCYBJC19600)the National Natural Science Foundation of China (No. 21621004)the Beiyang Young Scholar of Tianjin University (2012)
文摘A low-cost and easily prepared manganese carbonate(Mn CO_3) has been synthesized for catalytic conversion of 5-hydroxymethylfurfural(5-HMF) to 2,5-diformylfuran(DFF). The properties and morphology of the manganese carbonate were measured by SEM,XRD,TGA,BET and XPS. In this method,no harsh reaction conditions were required,and it was a simple and green process for the oxidation of 5-HMF into DFF. To achieve an optimum DFF yield,different reaction conditions,including reaction temperature,reaction time,catalyst amount,and solvents were investigated. Results from the experiments indicated that the highest DFF yield of 86.9% was obtained at 120 °C under atmospheric oxygen pressure after 6h. Finally,Mn CO_3 could be used at least five times with considerable stability.
基金financially supported by the National Natural Science Foundation of China (21506071)the Special Foundation of Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection (HSXT2-316)
文摘The development of high-efficiency and low-cost catalysts is very crucial for the MeerweinPonndorf-Verley (MPV) reduction of biomass-derived 5-hydroxymethylfurfural (HMF) into 2,5-dihydroxymethylfuran (DHMF). In this work, an amorphous and mesoporous zirconium phosphonate catalyst (Zr-DTMP), which is a zirconium-containing organic-inorganic nanohybrid, was successfully designed and synthesized by the simple assembly of zirconium tetrachloride (ZrCl4) and diethylene triaminepenta(methylene phosphonic acid)(DTMP). Satisfactorily, when Zr-DTMP was employed for the MPV reduction of HMF in the presence of 2-butanol (secBuOH), DHMF yield could be achieved as 96.5% in 3 h under a relatively mild reaction temperature of 140℃. Systematic investigations indicated that this high catalytic activity should be mainly due to the cooperative role of enhancive Lewis acid site (Zr4+) and Lewis base site (O2-) in activating the carbonyl group of HMF and dissociating the hydroxyl group of secBuOH, respectively. Additionally, Zr-DTMP showed excellent catalytic stability, when it was successively used 5 recycles, its surface characteristics and textural properties still remained almost unchanged, and so, the catalytic activity was not obviously affected. More interestingly, Zr-DTMP could also be applied for the selective reduction of other biomass-derived carbonyl compounds, such as 5-methylfurfural (MF), furfural (FF), levulinic acid (LA), ethyl levulinate (EL) and cyclohexanone (CHN), into the corresponding products with high yields, which is beneficial to the effective synthesis of various valuable bio-based chemicals.