The research on the parameters optimization for gasbag polishing machine tools, mainly aims at a better kinematics performance and a design scheme. Serial structural arm is mostly employed in gasbag polishing machine ...The research on the parameters optimization for gasbag polishing machine tools, mainly aims at a better kinematics performance and a design scheme. Serial structural arm is mostly employed in gasbag polishing machine tools at present, but it is disadvantaged by its complexity, big inertia, and so on. In the multi-objective parameters optimization, it is very difficult to select good parameters to achieve excellent performance of the mechanism. In this paper, a statistics parameters optimization method based on index atlases is presented for a novel 5-DOF gasbag polishing machine tool. In the position analyses, the structure and workspace for a novel 5-DOF gasbag polishing machine tool is developed, where the gasbag polishing machine tool is advantaged by its simple structure, lower inertia and bigger workspace. In the kinematics analyses, several kinematics performance evaluation indices of the machine tool are proposed and discussed, and the global kinematics performance evaluation atlases are given. In the parameters optimization process, considering the assembly technique, a design scheme of the 5-DOF gasbag polishing machine tool is given to own better kinematics performance based on the proposed statistics parameters optimization method, and the global linear isotropic performance index is 0.5, the global rotational isotropic performance index is 0.5, the global linear velocity transmission performance index is 1.012 3 m/s in the case of unit input matrix, the global rotational velocity transmission performance index is 0.102 7 rad/s in the case of unit input matrix, and the workspace volume is 1. The proposed research provides the basis for applications of the novel 5-DOF gasbag polishing machine tool, which can be applied to the modern industrial fields requiring machines with lower inertia, better kinematics transmission performance and better technological efficiency.展开更多
In view of the structure of traditional five-coord in ate machine tool, the work-piece and machine tool often move along their respec tive guides simultaneously on the whole. In this kind of machine structure, the tot...In view of the structure of traditional five-coord in ate machine tool, the work-piece and machine tool often move along their respec tive guides simultaneously on the whole. In this kind of machine structure, the total mass of moving parts including work-pieces, fixtures, rotating table, wor king table and so on is often very large. Besides, the elastic reform of transmi ssion and the viscous friction force of the guide can not be ignored. As a resul t, the machine tool can not move with high velocity and acceleration, and can no t meet the needs of modern fast and efficient production. The emergence of virtual-axis machine tool has provided a new approach for the solution of the above problems. The kernel of the virtual-axis machine tool is the parallel mechanism. So far, research of parallel mechanism in the world has achieved many results and various applied equipments based on parallel mecha nism have been worked out, but the research generally focuses on the working spa ce and kinematics analysis, dynamics are rarely considered. To meet the requirements of the modern fast and efficient production, reduce the cost and promote the machine tool’s acceleration character, not only should we analyze the kinematics of machine tool, but also we should study its dynamics a nd optimize the structure on the basis of analysis. In this paper, the kinem atics and dynamics of a 5-DOF (degrees of freedom) machine tool with novel para llel mechanism that has three moving DOF and one rotating DOF are studied by Rob ot-Wittenberg method. The dynamics character of the parallel robotic machine is analyzed and used to guide the structure design of machine tool. At last, the c orrectness is verified through a numerical simulation of 5-DOF. Hence, the dyna mics model can generally solve the problems existing in the parallel and hybrid machine tools. The dynamics character of the parallel robotic machine is studied and analyzed in quantity. The dynamics equation of the system can be written as This is a set of differential equations of four DOF system. Theoretically, the c losed solution of the forward and inverse problems can be gained by solving the above equations. The system equations quite suit to program at the computer. Whe n the forces are given, the state variables’ numerical solution can be gain ed through integral; and when the dynamics parameters are given, the forces can also be solved. But the multiple valued phenomena can not be avoided. We have developed simulation software based on the dynamics model presented by t his paper. The different effects of the structure parameters can be given by numerical simulation.展开更多
A systematic method for the forward kinematics of a five degrees of freedom (5-DOF) parallel mechanism with the legs' topology 4-UPS/UPU, is developed. Such mechanism is composed of a movable platform connected to ...A systematic method for the forward kinematics of a five degrees of freedom (5-DOF) parallel mechanism with the legs' topology 4-UPS/UPU, is developed. Such mechanism is composed of a movable platform connected to the base by four identical 6-DOF active limbs plus one active limb with its DOF being exactly the same as the specified DQF of the movable platform. Three translational and two rotational DOFs can be achieved. Firstly, a set of polynomial equations of forward position analysis is formulated based on the architecture of the mechanism. Then the system of equations is degraded from five-dimensional to three-dimensional by means of analytic elimination. Method of least squares and Gauss-Newton algorithm are used to construct the objective function and to solve it, respectively. Example shows that through 4-time iteration within 16 ms the ohjective, function converaes to the provided error tolerance. 10^-4.展开更多
基金supported by National Natural Science Foundation of China (Grant No. 51005207)Open Foundation of the Mechanical Engineering in Zhejiang University of Technology, China (Grant No.2009EP004)Foundation of Zhejiang Provincial Education Department of China (Grant No. Y200908129)
文摘The research on the parameters optimization for gasbag polishing machine tools, mainly aims at a better kinematics performance and a design scheme. Serial structural arm is mostly employed in gasbag polishing machine tools at present, but it is disadvantaged by its complexity, big inertia, and so on. In the multi-objective parameters optimization, it is very difficult to select good parameters to achieve excellent performance of the mechanism. In this paper, a statistics parameters optimization method based on index atlases is presented for a novel 5-DOF gasbag polishing machine tool. In the position analyses, the structure and workspace for a novel 5-DOF gasbag polishing machine tool is developed, where the gasbag polishing machine tool is advantaged by its simple structure, lower inertia and bigger workspace. In the kinematics analyses, several kinematics performance evaluation indices of the machine tool are proposed and discussed, and the global kinematics performance evaluation atlases are given. In the parameters optimization process, considering the assembly technique, a design scheme of the 5-DOF gasbag polishing machine tool is given to own better kinematics performance based on the proposed statistics parameters optimization method, and the global linear isotropic performance index is 0.5, the global rotational isotropic performance index is 0.5, the global linear velocity transmission performance index is 1.012 3 m/s in the case of unit input matrix, the global rotational velocity transmission performance index is 0.102 7 rad/s in the case of unit input matrix, and the workspace volume is 1. The proposed research provides the basis for applications of the novel 5-DOF gasbag polishing machine tool, which can be applied to the modern industrial fields requiring machines with lower inertia, better kinematics transmission performance and better technological efficiency.
文摘In view of the structure of traditional five-coord in ate machine tool, the work-piece and machine tool often move along their respec tive guides simultaneously on the whole. In this kind of machine structure, the total mass of moving parts including work-pieces, fixtures, rotating table, wor king table and so on is often very large. Besides, the elastic reform of transmi ssion and the viscous friction force of the guide can not be ignored. As a resul t, the machine tool can not move with high velocity and acceleration, and can no t meet the needs of modern fast and efficient production. The emergence of virtual-axis machine tool has provided a new approach for the solution of the above problems. The kernel of the virtual-axis machine tool is the parallel mechanism. So far, research of parallel mechanism in the world has achieved many results and various applied equipments based on parallel mecha nism have been worked out, but the research generally focuses on the working spa ce and kinematics analysis, dynamics are rarely considered. To meet the requirements of the modern fast and efficient production, reduce the cost and promote the machine tool’s acceleration character, not only should we analyze the kinematics of machine tool, but also we should study its dynamics a nd optimize the structure on the basis of analysis. In this paper, the kinem atics and dynamics of a 5-DOF (degrees of freedom) machine tool with novel para llel mechanism that has three moving DOF and one rotating DOF are studied by Rob ot-Wittenberg method. The dynamics character of the parallel robotic machine is analyzed and used to guide the structure design of machine tool. At last, the c orrectness is verified through a numerical simulation of 5-DOF. Hence, the dyna mics model can generally solve the problems existing in the parallel and hybrid machine tools. The dynamics character of the parallel robotic machine is studied and analyzed in quantity. The dynamics equation of the system can be written as This is a set of differential equations of four DOF system. Theoretically, the c losed solution of the forward and inverse problems can be gained by solving the above equations. The system equations quite suit to program at the computer. Whe n the forces are given, the state variables’ numerical solution can be gain ed through integral; and when the dynamics parameters are given, the forces can also be solved. But the multiple valued phenomena can not be avoided. We have developed simulation software based on the dynamics model presented by t his paper. The different effects of the structure parameters can be given by numerical simulation.
基金Supported by National Science Fund for Distinguished Young Scholars of China (No.50328506)Science and TechnologyChallenge Program of Tianjin (No.043103711).
文摘A systematic method for the forward kinematics of a five degrees of freedom (5-DOF) parallel mechanism with the legs' topology 4-UPS/UPU, is developed. Such mechanism is composed of a movable platform connected to the base by four identical 6-DOF active limbs plus one active limb with its DOF being exactly the same as the specified DQF of the movable platform. Three translational and two rotational DOFs can be achieved. Firstly, a set of polynomial equations of forward position analysis is formulated based on the architecture of the mechanism. Then the system of equations is degraded from five-dimensional to three-dimensional by means of analytic elimination. Method of least squares and Gauss-Newton algorithm are used to construct the objective function and to solve it, respectively. Example shows that through 4-time iteration within 16 ms the ohjective, function converaes to the provided error tolerance. 10^-4.