5-HT1A基因编码5-羟色胺(血清素)的G蛋白偶联受体(属于5-羟色胺受体亚家族)。C-1019G多态位点是5-HT1A基因启动子区一个重要的功能性多态位点,人群中存在3种基因型即CC、CG、GG,它与个体的恋爱关系及抑郁症、焦虑症等精神疾病密切相关...5-HT1A基因编码5-羟色胺(血清素)的G蛋白偶联受体(属于5-羟色胺受体亚家族)。C-1019G多态位点是5-HT1A基因启动子区一个重要的功能性多态位点,人群中存在3种基因型即CC、CG、GG,它与个体的恋爱关系及抑郁症、焦虑症等精神疾病密切相关。本文对5-HT1A基因C-1019G多态位点的相关机制、检测方法、研究进展等进行综述。The 5-HT1A gene encodes a G protein-coupled receptor for serotonin, which belongs to the 5-hydroxytryptamine receptor subfamily. C-1019G polymorphism is an important functional poly-morphism in the promoter region of 5-HT1A gene. There are three genotypes (CC, CG and GG) in the population, which are closely related to individual’s romantic relationship and mental disorders such as depression and anxiety. In this paper, the mechanism, detection methods and research progress of C-1019G polymorphism of 5-HT1A gene were reviewed.展开更多
In this work,Ag/Bi_(5)O_(7)I nanocomposite was prepared and firstly applied in piezo/photocatalytic reduction of N2 to NH3 and methyl orange(MO)degradation.Bi_(5)O_(7)I was synthesized via a hydrothermal-calcination m...In this work,Ag/Bi_(5)O_(7)I nanocomposite was prepared and firstly applied in piezo/photocatalytic reduction of N2 to NH3 and methyl orange(MO)degradation.Bi_(5)O_(7)I was synthesized via a hydrothermal-calcination method and shows nanorods morphology.Ag nanoparticles(NPs)were photo deposited on the Bi_(5)O_(7)I nanorods as electron trappers to improve the spatial separation of charge carriers,which was confirmed via XPS,TEM,and electronic chemical analyses.The catalytic test indicates that Bi_(5)O_(7)I presents the piezoelectric-like behavior,while the loading of Ag NPs can strengthen the character.Under ultrasonic vibration,the optimal Ag/Bi_(5)O_(7)I presents high efficiency in MO degradation.The degradation rate is determined to be 0.033 min1,which is 4.7 folds faster than that of Bi_(5)O_(7)I.The Ag/Bi_(5)O_(7)I also presents a high performance in piezocatalytic N2 fixation.The piezocatalytic NH3 generation rate reaches 65.4 μmol L^(-1)g^(-1)h^(-1)with water as a hole scavenger.The addition of methanol can hasten the piezoelectric catalytic reaction.Interestingly,when ultrasonic vibration and light irradiation simultaneously act on the Ag/Bi_(5)O_(7)I catalyst,higher performance in NH3 generation and MO degradation is observed.However,due to the weak adhesion of Ag NPs,some Ag NPs would fall off from the Bi_(5)O_(7)I surface under long-term ultrasonic vibration,which would greatly reduce the piezoelectric catalytic performance.This result indicates that a strong binding force is required when preparing the piezoelectric composite catalyst.The current work provides new insights for the development of highly efficient catalysts that can use multiple energies.展开更多
文摘5-HT1A基因编码5-羟色胺(血清素)的G蛋白偶联受体(属于5-羟色胺受体亚家族)。C-1019G多态位点是5-HT1A基因启动子区一个重要的功能性多态位点,人群中存在3种基因型即CC、CG、GG,它与个体的恋爱关系及抑郁症、焦虑症等精神疾病密切相关。本文对5-HT1A基因C-1019G多态位点的相关机制、检测方法、研究进展等进行综述。The 5-HT1A gene encodes a G protein-coupled receptor for serotonin, which belongs to the 5-hydroxytryptamine receptor subfamily. C-1019G polymorphism is an important functional poly-morphism in the promoter region of 5-HT1A gene. There are three genotypes (CC, CG and GG) in the population, which are closely related to individual’s romantic relationship and mental disorders such as depression and anxiety. In this paper, the mechanism, detection methods and research progress of C-1019G polymorphism of 5-HT1A gene were reviewed.
基金supported by Nature Science Foundation of Zhejiang Province(Grant No.LY20B030004).
文摘In this work,Ag/Bi_(5)O_(7)I nanocomposite was prepared and firstly applied in piezo/photocatalytic reduction of N2 to NH3 and methyl orange(MO)degradation.Bi_(5)O_(7)I was synthesized via a hydrothermal-calcination method and shows nanorods morphology.Ag nanoparticles(NPs)were photo deposited on the Bi_(5)O_(7)I nanorods as electron trappers to improve the spatial separation of charge carriers,which was confirmed via XPS,TEM,and electronic chemical analyses.The catalytic test indicates that Bi_(5)O_(7)I presents the piezoelectric-like behavior,while the loading of Ag NPs can strengthen the character.Under ultrasonic vibration,the optimal Ag/Bi_(5)O_(7)I presents high efficiency in MO degradation.The degradation rate is determined to be 0.033 min1,which is 4.7 folds faster than that of Bi_(5)O_(7)I.The Ag/Bi_(5)O_(7)I also presents a high performance in piezocatalytic N2 fixation.The piezocatalytic NH3 generation rate reaches 65.4 μmol L^(-1)g^(-1)h^(-1)with water as a hole scavenger.The addition of methanol can hasten the piezoelectric catalytic reaction.Interestingly,when ultrasonic vibration and light irradiation simultaneously act on the Ag/Bi_(5)O_(7)I catalyst,higher performance in NH3 generation and MO degradation is observed.However,due to the weak adhesion of Ag NPs,some Ag NPs would fall off from the Bi_(5)O_(7)I surface under long-term ultrasonic vibration,which would greatly reduce the piezoelectric catalytic performance.This result indicates that a strong binding force is required when preparing the piezoelectric composite catalyst.The current work provides new insights for the development of highly efficient catalysts that can use multiple energies.