期刊文献+
共找到65篇文章
< 1 2 4 >
每页显示 20 50 100
Expediting^(*)OH accumulation kinetics on metal-organic frameworks-derived CoOOH with CeO_(2) “accelerator” for electrocatalytic 5-hydroxymethylfurfural oxidation valorization
1
作者 Peiyun Zhou Haokun Pan +3 位作者 Guangtong Hai Xiang Liu Xiubing Huang Ge Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第11期721-732,共12页
In this work,nickel foam supported CeO_(2)-modified CoBDC(BDC stands for terephthalic acid linker)metal-organic frameworks(NF/CoBDC@CeO_(2)) are prepared by hydrothermal and subsequent impregnation methods,which can b... In this work,nickel foam supported CeO_(2)-modified CoBDC(BDC stands for terephthalic acid linker)metal-organic frameworks(NF/CoBDC@CeO_(2)) are prepared by hydrothermal and subsequent impregnation methods,which can be further transformed to NF/CoOOH@CeO_(2) by reconstruction during the electrocatalytic test.The obtained NF/CoOOH@CeO_(2) exhibits excellent performance in electrocatalytic oxidation of 5-hydroxymethylfurfural(HMF) because the introduction of CeO_(2) can optimize the electronic structure of the heterointerface and accelerate the accumulation of ^(*)OH.It requires only a potential of 1.290 V_(RHE) to provide a current density of 50 mA cm^(-2) in 1.0 M KOH+50 mM HMF,which is 222 mV lower than that required in 1,0 M KOH(1.512 V_(RHE)).In addition,density-functional theory calculation results demonstrate that CeO_(2) biases the electrons to the CoOOH side at the heterointerface and promotes the adsorption of ^(*)OH and ^(*)HMF on the catalyst surface,which lower the reaction energy barrier and facilitate the electrocata lytic oxidation process. 展开更多
关键词 CeO_(2) Metal-organic frameworks 5-hydroxymethylfurfural oxidation reaction HETEROINTERFACE Reconstruction
下载PDF
Enhancing the Electrocatalytic Oxidation of 5-Hydroxymethylfurfural Through Cascade Structure Tuning for Highly Stable Biomass Upgrading
2
作者 Xiaoli Jiang Xianhui Ma +7 位作者 Yuanteng Yang Yang Liu Yanxia Liu Lin Zhao Penglei Wang Yagang Zhang Yue Lin Yen Wei 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第12期449-467,共19页
Electrocatalytic 5-hydroxymethylfurfural oxidation reaction(HMFOR)provides a promising strategy to convert biomass derivative to highvalue-added chemicals.Herein,a cascade strategy is proposed to construct Pd-NiCo_(2)... Electrocatalytic 5-hydroxymethylfurfural oxidation reaction(HMFOR)provides a promising strategy to convert biomass derivative to highvalue-added chemicals.Herein,a cascade strategy is proposed to construct Pd-NiCo_(2)O_(4)electrocatalyst by Pd loading on Ni-doped Co3O4 and for highly active and stable synergistic HMF oxidation.An elevated current density of 800 mA cm^(-2)can be achieved at 1.5 V,and both Faradaic efficiency and yield of 2,5-furandicarboxylic acid remained close to 100%over 10 consecutive electrolysis.Experimental and theoretical results unveil that the introduction of Pd atoms can modulate the local electronic structure of Ni/Co,which not only balances the competitive adsorption of HMF and OH-species,but also promote the active Ni^(3+)species formation,inducing high indirect oxidation activity.We have also discovered that Ni incorporation facilitates the Co2+pre-oxidation and electrophilic OH*generation to contribute direct oxidation process.This work provides a new approach to design advanced electrocatalyst for biomass upgrading. 展开更多
关键词 5-hydroxymethylfurfural oxidation reaction Competitive adsorption Cascade strategy Elevated current density
下载PDF
Oxygen-vacancy-rich MnO_(x)supported RuO_(x)for efficient base-free oxidation of 5-hydroxymethylfurfural and 5-methoxymethylfurfural to 2,5-furandicarboxylic acid
3
作者 Jiali Wu Weizhen Xie +7 位作者 Yining Zhang Xixian Ke Tianyuan Li Huayu Fang Yong Sun Xianhai Zeng Lu Lin Xing Tang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期670-683,I0015,共15页
2,5-Furandicarboxylic acid(FDCA)is a promising biomass-derived polymeric monomer that serves as an attractive alternative to terephthalic acid derived from fossil resources.However,the green and efficient production o... 2,5-Furandicarboxylic acid(FDCA)is a promising biomass-derived polymeric monomer that serves as an attractive alternative to terephthalic acid derived from fossil resources.However,the green and efficient production of FDCA through the oxidation of 5-hydroxymethylfurfural(HMF)and its derivatives is still rudimentary under base-free conditions.In this work,oxygen-vacancy-rich Mn Oxwas prepared and displayed a strong adsorption and anchoring ability to Ru species that mainly exposed the(210)plane of RuO_(2),bringing about highly dispersed and active interfacial Ru-O-Mn structures.Experimental results and density functional theory calculations confirm that these above features greatly facilitate the adsorption/activation of oxygen and the dehydrogenation-oxidation of HMF/5-methoxymethylfurfural(MMF),which enables an efficient FDCA production under base-free and mild conditions.Notably,a desirable FDCA yield of 86.56%was still obtained from concentrated HMF(10 wt%)under base-free conditions over oxygen-vacancy-rich Mn Oxsupported Ru Ox(1.0 MPaO_(2),120℃,6 h).This work delineates a facile catalyst preparation strategy for HMF/MMF oxidation,and might open a new avenue for the green synthesis of FDCA under base-free conditions. 展开更多
关键词 Base-free oxidation Oxygen-vacancy-rich 5-hydroxymethylfurfural 5-Methoxymethylfurfural 2 5-Furandicarboxylic acid
下载PDF
Realizing efficient electrochemical oxidation of 5-hydroxymethylfurfural on a freestanding Ni(OH)_(2)/nickel foam catalyst
4
作者 Yunying Huo Cong Guo +6 位作者 Yongle Zhang Jingyi Liu Qiao Zhang Zhiting Liu Guangxing Yang Rengui Li Feng Peng 《Chinese Journal of Catalysis》 SCIE CAS CSCD 2024年第8期282-291,共10页
With the continuous improvement of solar energy production capacity,how to effectively use the electricity generated by renewable solar energy for electrochemical conversion of biomass is a hot topic.Electrochemical c... With the continuous improvement of solar energy production capacity,how to effectively use the electricity generated by renewable solar energy for electrochemical conversion of biomass is a hot topic.Electrochemical conversion of 5-hydroxymethylfurfural(HMF)to biofuels and value-added oxygenated commodity chemicals provides a promising and alternative pathway to convert re-newable electricity into chemicals.Although nickel-based eletrocatalysts are well-known for HMF oxidation,their relatively low intrinsic activity,poor conductivity and stability still limit the poten-tial applications.Here,we report the fabrication of a freestanding nickel-based electrode,in which Ni(OH)_(2) species were in-situ constructed on Ni foam(NF)support using a facile ac-id-corrosion-induced strategy.The Ni(OH)2/NF electrocatalyst exhibits stable and efficient electro-chemical HMF oxidation into 2,5-furandicarboxylic acid(FDCA)with HMF conversion close to 100% with high Faraday efficiency.In-situ formation strategy results in a compact interface between Ni(OH)_(2) and NF,which contributes to good conductivity and stability during electrochemical reac-tions.The superior performance benefits from dynamic cyclic evolution of Ni(OH)_(2) to NiOOH,which acts as the reactive species for HMF oxidation to FDCA.A scaled-up device based on a continu-ous-flow electrolytic cell was also established,giving stable operation with a high FDCA production rate of 27 mg h^(-1)cm^(−2).This job offers a straightforward,economical,and scalable design strategy to design efficient and durable catalysts for electrochemical conversion of valuable chemicals. 展开更多
关键词 Acid-corrosion-induced 5-hydroxymethylfurfural Electrocatalytic oxidation Ni electrocatalysis
下载PDF
Regulating the oxidation state of Pd to enhance the selective hydrogenation for 5-hydroxymethylfurfural
5
作者 Xin Li Yue Ma +3 位作者 Xuning Wang Jianguo Wu Dong Cao Daojian Cheng 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第8期60-68,共9页
The highly selective hydrogenation of 5-hydroxymethylfurfural to 2,5-dihydroxymethylfuran is an important reaction in the field of biomass hydrogenation,because it is a bridge between biomass resources and chemical in... The highly selective hydrogenation of 5-hydroxymethylfurfural to 2,5-dihydroxymethylfuran is an important reaction in the field of biomass hydrogenation,because it is a bridge between biomass resources and chemical industry.Here,we precisely constructed carbon nitride supported Pd-based catalysts by a simple impregnation-reduction method.By changing the reduction temperature,catalysts with different oxidation state could be precisely constructed.Moreover,the important correlation between the ratio of Pd^(0)/Pd^(2+)and catalytic activity is revealed during the selective hydrogenation of HMF.The Pd/g—C_(3)N_(4)—300 catalyst with a Pd^(0)/Pd^(2+)ratio of 3/2 showed the highest catalytic activity,which could get 96.9%5-hydroxymethylfurfural conversion and 90.3%2,5-dihydroxymethylfuran selectivity.Further density functional theory calculation revealed that the synergistic effect between Pd0and Pd2+in Pd/g—C_(3)N_(4)—300 system could boost the adsorption of the substrate and the dissociation of hydrogen.In this work,we highlight the important correlation between metal oxidation state and catalytic activity,which provides valuable insights for the rational design of precious metal catalysts for hydrogenation reactions. 展开更多
关键词 Pd/g-C_(3)N_(4) Selective hydrogenation 5-hydroxymethylfurfural 2 5-dihydroxymethylfuran oxidation state
下载PDF
Au^(δ-)-O_(v)-Ti^(3+):Active site of MO_(x)-Au/TiO_(2) catalysts for the aerobic oxidation of 5-hydroxymethylfurfural 被引量:1
6
作者 Weiyao Yang Mengchen Fu +2 位作者 Chenyu Yang Yiwen Zhang Chun Shen 《Green Energy & Environment》 SCIE EI CAS CSCD 2023年第3期785-797,共13页
Despite wide applications of noble metal-based catalysts in 5-hydroxymethylfurfural(HMF)oxidation,promoting the catalytic performance at low loading amounts still remains a significant challenge.Herein,a series of met... Despite wide applications of noble metal-based catalysts in 5-hydroxymethylfurfural(HMF)oxidation,promoting the catalytic performance at low loading amounts still remains a significant challenge.Herein,a series of metal oxide modified MO_(x)-Au/TiO_(2)(M=Fe,Co,Ni)catalysts with low Au loading amount of 0.5 wt%were synthesized.Addition of transition metal oxides promotes electron transfer and generation of the Au^(δ-)-O_(v)-Ti^(3+)interface.A combination study reveals that the dual-active site(Au^(δ-)-O_(v)-Ti^(3+))governs the catalytic performance of the ratedetermining step,namely hydroxyl group oxidation.Au^(δ-) site facilitates chemisorption and activation of O_(2) molecules.At the same time,O_(v)-Ti^(3+) site acts as the role of“killing two birds with one stone”:enhancing adsorption of both reactants,accelerating the activation and dissociation of H_(2)O,and facilitating activation of the adsorbed O_(2).Besides,superoxide radicals instead of base is the active oxygen species during the rate-determining step.On this basis,a FDCA yield of 71.2% was achieved under base-free conditions,complying with the“green chemistry”principle.This work provides a new strategy for the transition metal oxides modification of Au-based catalysts,which would be constructive for the rational design of other heterogeneous catalysts. 展开更多
关键词 5-hydroxymethylfurfural Base-free oxidation Interfacial catalysis Active oxygen species
下载PDF
2,5-Furandicarboxylic acid production via catalytic oxidation of 5-hydroxymethylfurfural:Catalysts,processes and reaction mechanism 被引量:10
7
作者 Chunlin Chen Lingchen Wang +4 位作者 Bin Zhu Zhenqiang Zhou Soliman I.El-Hout Jie Yang Jian Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第3期528-554,共27页
Biomass conversion to value-added chemicals has received tremendous attention for solving global warming issues and fossil fuel depletion.5-Hydroxymethylfurfural(HMF)is a key bio-based platform molecule to produce man... Biomass conversion to value-added chemicals has received tremendous attention for solving global warming issues and fossil fuel depletion.5-Hydroxymethylfurfural(HMF)is a key bio-based platform molecule to produce many useful organic chemicals by oxidation,hydrogenation,polymerization,and ring-opening reactions.Among all derivatives,the oxidation product 2,5-furandicarboxylic acid(FDCA)is a promising alternative to petroleum-based terephthalic acid for the synthesis of biodegradable plastics.This review analytically discusses the recent progress in the thermocatalytic,electrocatalytic,and photocatalytic oxidation of HMF into FDCA,including catalyst screening,synthesis processes,and reaction mechanism.Rapid fundamental advances may be possible in non-precious metal and metal-free catalysts that are highly efficient under the base-free conditions,and external field-assisted processes like electrochemical or photoelectrochemical cells. 展开更多
关键词 5-hydroxymethylfurfural 2 5-Furandicarboxylic acid Catalytic oxidation Mechanism
下载PDF
Selective oxidation of biomass derived 5-hydroxymethylfurfural to 2,5-diformylfuran using sodium nitrite 被引量:4
8
作者 Xianxiang Liu Hui Ding +3 位作者 Qiong Xu Wenzhou Zhong Dulin Yin Shengpei Su 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2016年第1期117-121,共5页
A mild and simple process for the effective oxidation of 5-hydroxymethylfurfural(HMF) into 2,5-diformylfuran(DFF) has been developed using Na NO2 as the oxidant. Some important reaction parameters were investigate... A mild and simple process for the effective oxidation of 5-hydroxymethylfurfural(HMF) into 2,5-diformylfuran(DFF) has been developed using Na NO2 as the oxidant. Some important reaction parameters were investigated to optimize the oxidation of HMF into DFF. It was found that the reaction solvent was very crucial for this reaction. Trifluoroacetic acid was the best solvent for the oxidation of HMF into DFF by Na NO2.Under the optimal reaction condition, almost quantitative HMF conversion and high DFF yield of 90.4% were obtained after 1 h at room temperature. 展开更多
关键词 5-hydroxymethylfurfural 2 5-diformylfuran Sodium nitrite oxidation Renewable resource
下载PDF
Rational construction of metal–base synergetic sites on Au/Mg-beta catalyst for selective aerobic oxidation of 5-hydroxymethylfurfural 被引量:1
9
作者 Zhiguo Zhu Xiongjie Gao +6 位作者 Xiuming Wang Mengdie Yin Qingyao Wang Wanzhong Ren Bo Wang Hongying Lü Weiping Liao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第11期599-609,I0014,共12页
The selective aerobic oxidation of biomass-derived 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid (FDCA, a potential renewable substitution of fossil-based terephthalic acid to produce polyethylene 2,5-furandic... The selective aerobic oxidation of biomass-derived 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid (FDCA, a potential renewable substitution of fossil-based terephthalic acid to produce polyethylene 2,5-furandicarboxylate plastic) is an appealing transformation for constructing eco-friendly and sustainable chemical processes. Au supported catalysts have showed encouraging performances for this well-received conversion, whose catalytic behavior was greatly affected by the adopted support derived from the existence of metal-support interactions. Herein, a series of Mg-Beta zeolites were hydrothermally synthesized via developed structural reconstruction, which were employed as basic supports for Au catalysts to construct bifunctional catalysts. The relationship between structure (Au particle size, basicity within zeolites and Auδ+ contents) and FDCA yield was concretely established. The conclusion was made that the utilization of Mg-Beta zeolites with strong basicity as the support could not only improve the FDCA yield but also decrease the amount of additional base. Furthermore, the possible reaction mechanism was also proposed via tracking time-dependent variations of corresponding organics and controlled experiment. This work provides some guidance for rationally designing multifunctional catalysts in the view of integrating metal catalysts with metallosilicate zeolites, which was beneficial to the catalytic upgrading of organic compounds with multiple functional groups. 展开更多
关键词 5-hydroxymethylfurfural Aerobic oxidation 2 5-Furandicarboxylic acid Bifunctional Au/Mg-Beta catalyst Structural reconstruction
下载PDF
Preparation of Anisotropic MnO2 Nanocatalysts for Selective Oxidation of Benzyl Alcohol and 5-Hydroxymethylfurfural 被引量:1
10
作者 Huanlin Wang Yu Song +4 位作者 Xuan Liu Shiyu Lu Chunmei Zhou Yuguang Jin Yanhui Yang 《Transactions of Tianjin University》 EI CAS 2020年第5期382-390,共9页
Anisotropic MnO2 nanostructures,includingα-phase nanowire,α-phase nanorod,δ-phase nanosheet,α+δ-phase nanowire,and amorphous fl occule,were synthesized by a simple hydrothermal method through adjusting the pH of ... Anisotropic MnO2 nanostructures,includingα-phase nanowire,α-phase nanorod,δ-phase nanosheet,α+δ-phase nanowire,and amorphous fl occule,were synthesized by a simple hydrothermal method through adjusting the pH of the precursor solution and using diff erent counterions.The catalytic properties of the as-synthesized MnO2 nanomaterials in the selective oxidation of benzyl alcohol(BA)and 5-hydroxymethylfurfural(HMF)were evaluated.The eff ects of micromorphology,phase structure,and redox state on the catalytic activity of MnO2 nanomaterials were investigated.The results showed that the intrinsic catalytic oxidation activity was mainly infl uenced by the unique anisotropic structure and surface chemical property of MnO2.With one-dimensional and 2D structures exposing highly active surfaces,unique crystal forms,and high oxidation state of Mn,the intrinsic activities for MnO2 catalysts synthesized in pH 1,5,and 10 solutions(denoted as MnO2-pH1,MnO2-pH5,and MnO2-pH10,respectively)were twice higher than those of other MnO2 catalysts in oxidation of BA and HMF.With a moderate aspect ratio,theα+δnanowire of MnO2-pH10 exhibited the highest average oxidation state,most abundant active sites,and the best catalytic oxidation activity. 展开更多
关键词 Manganese dioxide Anisotropic structure Catalytic oxidation Benzyl alcohol 5-hydroxymethylfurfural
下载PDF
Protonated and layered transition metal oxides as solid acids for dehydration of biomass-based fructose into 5-hydroxymethylfurfural
11
作者 Jiawei Zhong Yuanyuan Guo Jinzhu Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2017年第1期147-154,共8页
A serial of protonated and layered transition metal oxides, including layered HTaWO6, HNbMoO6 as well as HNbWO6, were synthesized by solid-state reaction and ion-exchange. The layered HTaWO6 has been systematically st... A serial of protonated and layered transition metal oxides, including layered HTaWO6, HNbMoO6 as well as HNbWO6, were synthesized by solid-state reaction and ion-exchange. The layered HTaWO6 has been systematically studied as a solid acid to realize the dehydration of fructose to 5-hydroxymethylfurfural (HMF). The transition metal oxide samples were characterized with ICP-OES, EDS, XRD, XPS, SEM, TGA, FT-IR, N-2 adsorption-desorption and NH3-TPD. The influential factors such as reaction temperature, reaction time, solvent, catalyst amount and substrate concentration were deeply investigated. The optimized fructose conversion rate of 99% with HMF yield of 67% were achieved after 30 min at 140 degrees C in dimethylsulfoxide. (C) 2016 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved. 展开更多
关键词 BIOMASS DEHYDRATION 5-hydroxymethylfurfural Layered transition metal oxide Solid acid
下载PDF
Interface engineering of 2D NiFe LDH/NiFeS heterostructure for highly efficient 5-hydroxymethylfurfural electrooxidation
12
作者 Lili Wang Ya Yan +11 位作者 Rulin Li Xujie Han Jiahui Li Ting Ran Jialu Li Baichuan Xiong Xiaorong Song Zhaohui Yin Hong Wang Qingjun Zhu Bowen Cheng Zhen Yin 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第9期514-520,共7页
The electrochemical oxidation of 5-hydroxymethylfurfural(HMF)to valuable chemicals is an efficient way to upgrade biomass molecules and replace traditional catalytic synthesis.It is crucial to develop efficient and lo... The electrochemical oxidation of 5-hydroxymethylfurfural(HMF)to valuable chemicals is an efficient way to upgrade biomass molecules and replace traditional catalytic synthesis.It is crucial to develop efficient and low-cost earth-abundant electrocatalysts to enhance catalytic performance of HMF oxidation.Herein,a new type of two-dimensional(2D)hybrid arrays consisting of Ni Fe layered double hydroxides(LDH)nanosheets and bimetallic sulfide(Ni Fe S)is constructed via interface engineering for efficient electrocatalytic oxidation of HMF to 2,5-furandicarboxylic acid(FDCA).The preparation process of 2D Ni Fe LDH/NiFeS with ultrathin heterostructure involves in anchoring a Co-based metal-organic framework(Co MOF)as template onto the carbon cloth(CC)via in-situ growth,formation of NiFe LDH on the surface of Co MOF and subsequent partial sulfidation.The electrocatalyst of Ni Fe LDH/Ni Fe S exhibits outstanding performance towards HMF oxidation,about 98.5%yield for FDCA and 97.2%Faraday efficiency(FE)in the alkaline electrolyte with 10 mmol/L HMF,as well as excellent stability retaining 90.1%FE for FDCA after six cycles test.Moreover,even at an HMF concentration of 100 mmol/L,the yield and FE for FDCA remain high at 83.6%and 93.6%,respectively.These findings highlight that 2D heterostructure containing abundant interfaces between Ni Fe LDH nanosheets and Ni Fe S can enhance the intrinsic activity of LDH and thus promote the oxidation reaction kinetics.Additionally,the synergistic effect of the bimetallic Ni Fe compounds also improved the selectivity of HMF conversion to FDCA.Our present work demonstrates that constructing 2D ultrathin heterostructure of Ni Fe LDH/Ni Fe S is a facile strategy via interface engineering to enhance the intrinsic activity of LDH electrocatalysts,which would open new avenues toward low-cost and advanced 2D nanocatalysts for sustainable energy conversion and electrochemical valorization of biomass derivatives. 展开更多
关键词 Electrocatalytic oxidation Interface engineering 2D ultrathin heterostructure Layered double hydroxides 5-hydroxymethylfurfural
原文传递
Strong metal-support interaction between AuPd nanoparticles and oxygen-rich defect ZrO_(2) for enhanced catalytic 5-hydroxymethylfurfural oxidation
13
作者 Yunlei Zhang Yiran Liu +3 位作者 Wen Guan Mengxue Cao Yao Chen Pengwei Huo 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第2期507-511,共5页
The unique properties of metal oxide surfaces,crystal surfaces and defects play vital roles in biomass upgrading reactions.In this work,hierarchical porous bowl-shaped ZrO_(2)(HB-ZrO_(2))with mixed crystal phase was d... The unique properties of metal oxide surfaces,crystal surfaces and defects play vital roles in biomass upgrading reactions.In this work,hierarchical porous bowl-shaped ZrO_(2)(HB-ZrO_(2))with mixed crystal phase was designed and employed as the support for loading AuPd bimetal with different proportions to synthesize AuPd/HB-ZrO_(2) catalysts.The effects of surface chemistry,oxygen defects,bimetal interaction and metal-support interaction of AuPd/HB-ZrO_(2) on catalytic performance for the selective oxidation of 5-hydroxymethylfurfural(HMF)to 2,5-furandicarboxylic acid(FDCA)were systematically investigated.The Au 2 Pd1/HB-ZrO_(2) catalyst afforded a satisfactory FDCA yield of 99.9%from HMF oxidation using O_(2) as the oxidant in water,accompanied with an excellent FDCA productivity at 97.6 mmol g^(−1) h^(−1).This work offers fresh insights into rationally designing efficient catalysts with oxygen-rich defects for the catalytic upgrading of biomass platform chemicals. 展开更多
关键词 5-hydroxymethylfurfural oxidation 2 5-Furandicarboxylic acid Oxygen-rich defect ZrO_(2) AuPd bimetal Bowl-shaped structure
原文传递
As_(2)O_(3)与Cu-ZSM-5催化剂的相互作用机理
14
作者 张欢 史一林 +4 位作者 刘梁 王晨星 孙瑞彬 贾里 金燕 《中国环境科学》 EI CAS CSCD 北大核心 2024年第4期2003-2010,共8页
基于密度泛函理论计算了NO和As_(2)O_(3)在Cu-ZSM-5表面的吸附性能.通过确立As_(2)O_(3)在Cu-ZSM-5表面的最佳吸附位点,对As3+在其活性位点吸附的反应路径进行研究,计算As在催化剂上的吸附反应活化能垒和决速步骤,揭示As_(2)O_(3)与活... 基于密度泛函理论计算了NO和As_(2)O_(3)在Cu-ZSM-5表面的吸附性能.通过确立As_(2)O_(3)在Cu-ZSM-5表面的最佳吸附位点,对As3+在其活性位点吸附的反应路径进行研究,计算As在催化剂上的吸附反应活化能垒和决速步骤,揭示As_(2)O_(3)与活性位点Cu-O-Cu的成键机制和相互作用机理.结果表明,NO和As_(2)O_(3)都以非氧端吸附在Cu-ZSM-5活性位点Cu-O-Cu的晶格氧位,吸附能分别为-218.515kJ/mol和-206.422kJ/mol,吸附过程中有电荷转移且发生了强烈的相互作用.As_(2)O_(3)在Cu-ZSM-5活性位点Cu-O-Cu的晶格氧上的氧化过程分两步进行,As^(3+)作为Lewis碱与Lewis酸中心的Cu-O-Cu发生非均相氧化反应,第一阶段的氧化产物As_(2)O_(4)在相邻的活性位点上发生二次氧化反应,生成的As_(2)O_(5)成为As^(3+)吸附后的主要存在形式.其中,生成As_(2)O_(4)的反应阶段需要跨越242.75kJ/mol的能垒,成为整个氧化进程的决速步骤. 展开更多
关键词 CU-ZSM-5 As_(2)O_(3) 吸附 氧化反应 能垒
下载PDF
Mapping out the reaction network of humin formation at the initial stage of fructose dehydration in water
15
作者 Xing Fu Yexin Hu +4 位作者 Ping Hu Hui Li Shuguang Xu Liangfang Zhu Changwei Hu 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第6期1016-1026,共11页
The formation of humins hampers the large-scale production of 5-hydroxymethylfurfural(HMF)in biorefinery.Here,a detailed reaction network of humin formation at the initial stage of fructose-to-HMF dehydration in water... The formation of humins hampers the large-scale production of 5-hydroxymethylfurfural(HMF)in biorefinery.Here,a detailed reaction network of humin formation at the initial stage of fructose-to-HMF dehydration in water is delineated by combined experimental,spectroscopic,and theoretical studies.Three bimolecular reaction pathways to build up soluble humins are demonstrated.That is,the intermolecular etherification of β-furanose at room temperature initiates the C12 path,whereas the C-C cleavage of a-furanose at 130-150℃ leads to C11 path,and that of open-chain fructose at 180℃ to C11' path.The successive intramolecular dehydrations and condensations of the as-formed bimolecular intermediates lead to three types of soluble humins.We show that the C12 path could be restrained by using HCl or AlCl_(3) catalyst,and both the C12 and C110 paths could be effectively inhibited by adding THF as a co-solvent or accelerating heating rate via microwave heating. 展开更多
关键词 Carbohydrates 5-hydroxymethylfurfural reaction network Soluble humins TAUTOMER
下载PDF
Electrocatalytic oxidation of 5-hydroxymethylfurfural for sustainable 2,5-furandicarboxylic acid production-From mechanism to catalysts design 被引量:2
16
作者 Xiaoli Jiang Wei Li +5 位作者 Yanxia Liu Lin Zhao Zhikai Chen Lan Zhang Yagang Zhang Sining Yun 《SusMat》 2023年第1期21-43,共23页
Catalytic conversion of biomass-based platform chemicals is one of the significant approaches to utilize renewable biomass resources.2,5-Furandicarboxylic acid(FDCA),obtained by an electrocatalytic oxidation of 5-hydr... Catalytic conversion of biomass-based platform chemicals is one of the significant approaches to utilize renewable biomass resources.2,5-Furandicarboxylic acid(FDCA),obtained by an electrocatalytic oxidation of 5-hydroxymethylfurfural(HMF),has attracted extensive attention due to the potential of replacing terephthalic acid to synthesize high-performance polymeric materials for commercialization.In the present work,the pHdependent reaction pathways and factors influencing the degree of functional group oxidation are first discussed.Then the reaction mechanism of HMF oxidation is further elucidated using the representative examples.In addition,the emerging catalyst design strategies(defects,interface engineering)used in HMF oxidation are generalized,and structure-activity relationships between the abovementioned strategies and catalysts performance are analyzed.Furthermore,cathode pairing reactions,such as hydrogen evolution reaction,CO_(2) reduction reaction(CO_(2)RR),oxygen reduction reaction,and thermodynamically favorable organic reactions to lower the cell voltage of the electrolysis system,are discussed.Finally,the challenges and prospects of the electrochemical oxidation of HMF for FDCA are presented,focusing on deeply investigated reaction mechanism,coupling reaction,reactor design,and downstream product separation/purification. 展开更多
关键词 5-hydroxymethylfurfural catalysts design strategies electrocatalytic oxidation pairing reactions reaction mechanism
原文传递
Carbon-based nanoarrays embedded with Ce-doped ultrasmall Co_(2)P nanoparticles enable efficient electrooxidation of 5-hydroxymethylfurfural coupled with hydrogen production 被引量:1
17
作者 Shangfang Xie Hongchuan Fu +2 位作者 Liyu Chen Yingwei Li Kui Shen 《Science China Chemistry》 SCIE EI CAS CSCD 2023年第7期2141-2152,共12页
The electrooxidation of 5-hydroxymethylfurfural(HMFOR)not only offers a green route to attain high-value 2,5-furandicarboxylic acid(FDCA)from biomass,but also is considered as a promising approach to replace the kinet... The electrooxidation of 5-hydroxymethylfurfural(HMFOR)not only offers a green route to attain high-value 2,5-furandicarboxylic acid(FDCA)from biomass,but also is considered as a promising approach to replace the kinetically sluggish OER for future hydrogen production.Herein,we report the construction and structural optimization of Ce-doped ultrasmall Co_(2)P nanoparticles(NPs)in carbon-based nanoarrays to boost HER-coupled HMFOR.We demonstrate that the electronic structure of Co-based electrocatalysts can be positively regulated by Ce doping and the optimized Ce-Co_(2)P-based electrocatalyst only require a low voltage of 1.20 V vs.RHE to achieve 10 m A cm^(-2)for HMFOR with an excellent FDCA Faraday efficiency(FEFDCA)of 98.5%,which are superior to its Ce-free counterpart(1.29 V vs.RHE;FEFDCA=83.9%).When being assembled into a HERcoupled HMFOR system,this bifunctional electrocatalyst can achieve 50 m A cm^(-2)with an ultralow voltage of 1.46 V,which is reduced by 210 m Vas compared with that of its Ce-free counterpart(1.67 V).Quasi-operando experiments and DFTcalculations further reveal the significant roles of Ce doping in promoting the charge transfer between active sites and HMF,and reducing the free energy barrier of intermediate(^(*)HMFCA)dehydrogenation.This study provides new insights into the underlying mechanisms of Ce doping into metal phosphides for boosting HER-coupled HMFOR,developing a facile methodology to construct efficient electrocatalysts for energy storage/conversion systems. 展开更多
关键词 ultrasmall Co_(2)P nanoparticles Ce doping nanosheet arrays 5-hydroxymethylfurfural electrooxidation hydrogen evolution reaction
原文传递
Selective and effective oxidation of 5-hydroxymethylfurfural by tuning the intermediates adsorption on Co-Cu-CN_(x) 被引量:1
18
作者 Tianyun Jing Shaokang Yang +3 位作者 Yonghai Feng Tingting Li Yunpeng Zuo Dewei Rao 《Nano Research》 SCIE EI CSCD 2023年第5期6670-6678,共9页
Co-based catalysts are promising alternatives to precious metals for the selective and effective oxidation of 5-hydroxymethylfurfural(HMF)to the higher value-added 2,5-furandicarboxylic acid(FDCA).However,these cataly... Co-based catalysts are promising alternatives to precious metals for the selective and effective oxidation of 5-hydroxymethylfurfural(HMF)to the higher value-added 2,5-furandicarboxylic acid(FDCA).However,these catalysts still suffer from unsatisfactory activity and poor selectivity.A series of N-doped carbon-supported Co-based dual-metal nanoparticles(NPs)have been designed,among which the Co-Cu_(1.4)-CN_(x) exhibits enhanced HMF oxidative activity,achieving FDCA formation rates 4 times higher than that of pristine Co-CN_(x),with 100%FDCA selectivity.Density functional theory(DFT)calculations evidenced that the increased electron density on Co sites induced by Cu can mediate the positive electronegativity offset to downshift the dband center of Co-Cu_(1.4)-CN_(x),thus reducing the energy barriers for the conversion of HMF to FDCA.Such findings will support the development of superior non-precious metal catalysts for HMF oxidation. 展开更多
关键词 Co-based materials 5-hydroxymethylfurfural(HMF)oxidative activity 2 5-furandicarboxylic acid(FDCA)selectivity electronegativity offset d-band center
原文传递
Significantly improved oxidation of bio-based furans into furan carboxylic acids using substrate-adapted whole cells
19
作者 Mao Wen Xue-Ying Zhang +1 位作者 Min-Hua Zong Ning Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第2期20-26,共7页
Furan carboxylic acids are important building blocks in polymer and fine chemical industries. In this work, a simple substrate adaptation strategy was applied to improve the catalytic performances of Comamonas testost... Furan carboxylic acids are important building blocks in polymer and fine chemical industries. In this work, a simple substrate adaptation strategy was applied to improve the catalytic performances of Comamonas testosteroni SC1588 cells for the synthesis of various furan carboxylic acids. It was found that biocatalytic synthesis of 5-hydroxymethyl-2-furancarboxylic acid(HMFCA) was substantially promoted by adding histidine and increasing cell concentrations. HMFCA was produced in a quantitative yield from200 m M HMF in 24 h. Besides, the HMFCA yields of 71%–81% were achieved with the substrate concentrations up to 250–300 m M. It was firstly found that 4-tert-butylcatechol(TBC), as the stabilizer present in HMF, exerted a significantly detrimental effect on whole-cell catalytic synthesis of HMFCA at high substrate concentrations(more than 130 m M). In addition, a variety of furan carboxylic acids such as2-furoic acid, 5-methyl-2-furancarboxylic acid and 5-methoxymethyl-2-furancarboxylic acid were synthesized with the yields up to 98%. 展开更多
关键词 5-hydroxymethylfurfural 5-hydroxymethyl-2-furancarboxylic acid oxidation SUBSTRATE adaptation strategy WHOLE-CELL biocatalysis
下载PDF
N缺陷g-C_(3)N_(5)修饰S掺杂苝酰亚胺增强可见光自芬顿苯酚氧化耦合Cr(Ⅵ)还原
20
作者 徐凯旋 亢玉龙 +3 位作者 贺红斌 高晓明 赵晨宇 任瑞阳 《无机化学学报》 SCIE CAS CSCD 北大核心 2023年第1期32-44,共13页
通过静电自组装制备有机复合半导体N缺陷g-C_(3)N_(5)(NVs)修饰S掺杂苝酰亚胺(S-PDI)。NVs具有丰富的活性位点,而具有氨基基团的酰胺增强了S-PDI与NVs的分子间作用力。NVs质量分数30%的30%NVs/S-PDI对Cr(Ⅵ)的还原率为79.96%,对苯酚的... 通过静电自组装制备有机复合半导体N缺陷g-C_(3)N_(5)(NVs)修饰S掺杂苝酰亚胺(S-PDI)。NVs具有丰富的活性位点,而具有氨基基团的酰胺增强了S-PDI与NVs的分子间作用力。NVs质量分数30%的30%NVs/S-PDI对Cr(Ⅵ)的还原率为79.96%,对苯酚的降解率为74.40%;30%NVs/S-PDI协同氧化苯酚与还原Cr(Ⅵ)过程中,Cr(Ⅵ)的还原率为92.83%,苯酚的降解率为93.89%,即苯酚的氧化降解促进了Cr(Ⅵ)的还原,Cr(Ⅵ)的还原增强了苯酚的氧化降解。NVs/S-PDI充分利用导带的还原性能和价带的氧化性能,实现电子空穴的空间分离,协同强化光催化过程中的氧化半反应和还原半反应,同步提升光催化氧化还原性能。同时,光照产生的电子、H_(2)O_(2)与Cr(Ⅵ)形成一个光自芬顿反应过程,进一步促进了苯酚的氧化降解与Cr(Ⅵ)的还原去除。 展开更多
关键词 N缺陷g-C_(3)N_(5) S掺杂苝酰亚胺 光催化 氧化半反应 还原半反应 光自芬顿反应
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部