期刊文献+
共找到248篇文章
< 1 2 13 >
每页显示 20 50 100
Advances in selective conversion of carbohydrates into 5-hydroxymethylfurfural 被引量:1
1
作者 Jie Liang Jianchun Jiang +4 位作者 Tingting Cai Chao Liu Jun Ye Xianhai Zeng Kui Wang 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第9期1384-1406,共23页
Converting carbohydrates into 5-hydroxymethylfurfural(5-HMF) is an attractive and promising route for value-added utilization of agricultural and forestry biomass resource. As an important platform compound, 5-HMF pos... Converting carbohydrates into 5-hydroxymethylfurfural(5-HMF) is an attractive and promising route for value-added utilization of agricultural and forestry biomass resource. As an important platform compound, 5-HMF possesses high active furan structure with hydroxymethyl and aldehyde group for production of various bio-chemicals and materials, meanwhile, which suffer from low stability and poor yield during the industrial biorefinery process. Hence, selective production of 5-HMF with high-yield and low-cost has attracted extensive attention from scientific and industrial researchers. This review sorted and described the latest advanced research on solvent and catalyst system, as well as energy field effect for production of 5-HMF with different feedstock in detail, emphatically discussing the solvent effect and its synergistic effect with other aspects. Besides, the future prospects and challenges for production of 5-HMF from carbohydrates were also presented, which provide a profound insight into industrial 5-HMF process with economic and environmental feature. 展开更多
关键词 5-hydroxymethylfurfural BIOREFINERY SOLVENT SELECTIVITY CARBOHYDRATE
下载PDF
Oxygen-vacancy-rich MnO_(x)supported RuO_(x)for efficient base-free oxidation of 5-hydroxymethylfurfural and 5-methoxymethylfurfural to 2,5-furandicarboxylic acid
2
作者 Jiali Wu Weizhen Xie +7 位作者 Yining Zhang Xixian Ke Tianyuan Li Huayu Fang Yong Sun Xianhai Zeng Lu Lin Xing Tang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期670-683,I0015,共15页
2,5-Furandicarboxylic acid(FDCA)is a promising biomass-derived polymeric monomer that serves as an attractive alternative to terephthalic acid derived from fossil resources.However,the green and efficient production o... 2,5-Furandicarboxylic acid(FDCA)is a promising biomass-derived polymeric monomer that serves as an attractive alternative to terephthalic acid derived from fossil resources.However,the green and efficient production of FDCA through the oxidation of 5-hydroxymethylfurfural(HMF)and its derivatives is still rudimentary under base-free conditions.In this work,oxygen-vacancy-rich Mn Oxwas prepared and displayed a strong adsorption and anchoring ability to Ru species that mainly exposed the(210)plane of RuO_(2),bringing about highly dispersed and active interfacial Ru-O-Mn structures.Experimental results and density functional theory calculations confirm that these above features greatly facilitate the adsorption/activation of oxygen and the dehydrogenation-oxidation of HMF/5-methoxymethylfurfural(MMF),which enables an efficient FDCA production under base-free and mild conditions.Notably,a desirable FDCA yield of 86.56%was still obtained from concentrated HMF(10 wt%)under base-free conditions over oxygen-vacancy-rich Mn Oxsupported Ru Ox(1.0 MPaO_(2),120℃,6 h).This work delineates a facile catalyst preparation strategy for HMF/MMF oxidation,and might open a new avenue for the green synthesis of FDCA under base-free conditions. 展开更多
关键词 Base-free oxidation Oxygen-vacancy-rich 5-hydroxymethylfurfural 5-Methoxymethylfurfural 2 5-Furandicarboxylic acid
下载PDF
Uncovering the electrooxidation behavior of 5-hydroxymethylfurfural on Ni/Co electrodes
3
作者 Shilin Fan Bin Zhu +5 位作者 Xiao Yu Yang Gao Weiping Xie Yong Yang Jian Zhang Chunlin Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期1-7,共7页
Biomass,derived from plant photosynthesis that captures carbon dioxide to form carbohydrates,offers vast renewable reserves.The electrooxidation of biomass,coupled with the hydrogen evolution reaction,enables the simu... Biomass,derived from plant photosynthesis that captures carbon dioxide to form carbohydrates,offers vast renewable reserves.The electrooxidation of biomass,coupled with the hydrogen evolution reaction,enables the simultaneous production of biomass-based plastic monomers and green hydrogen,attracting significant scholarly interest.However,ambiguity remains regarding the adsorption mechanism at the catalyst surface(Langmuir-Hinshelwood or Eley-Rideal)and the adsorbed substrate groups.To address this,we prepared a Ni/Co electrode for the electrooxidation of 5-hydroxymethylfurfural(HMF)into 2,5-furandicarboxylic acid(FDCA)through a corrosion reaction and electro-reduction pathway.HMF conversion reached 100.00%,FDCA yield reached 96.82%,and Faradic efficiency(FE)reached 92.14%.Meaningfully,utilizing in-situ spectroscopy and electrochemical methods,this work provided valuable insights into active sites and catalyst surface adsorption. 展开更多
关键词 ELECTROCATALYSIS ELECTROCHEMISTRY 2 5-Furandicarboxylicacid 5-hydroxymethylfurfural Biomass
下载PDF
Transforming liquid flow fuel cells to controllable reactors for highlyefficient oxidation of 5-hydroxymethylfurfural to 2, 5-furandicarboxylic acid at low temperature
4
作者 Ye Qiang Xi Liu +2 位作者 Denghao Ouyang Zhao Jiang Xuebing Zhao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期621-631,I0014,共12页
Highly-efficient oxidation of 5-hydroxymethylfurtural(HMF) to 2,5-furandicarboxylic acid(FDCA) at low temperature with air as the oxidant is still challenging.Herein,inspired by the respirato ry electron transport cha... Highly-efficient oxidation of 5-hydroxymethylfurtural(HMF) to 2,5-furandicarboxylic acid(FDCA) at low temperature with air as the oxidant is still challenging.Herein,inspired by the respirato ry electron transport chain(ETC) of living cells mediated by electron carriers,we constructed artificial ETCs and transformed liquid flow fuel cells(LFFCs) to flexible reactors for efficient oxidation of HMF to produce FDCA under mild conditions.This LFFC reactor employed an electrodeposition modified nickel foam as an anode to promote HMF oxidation and(VO_(2))_(2)SO_(4) as a cathode electron carrier to facilitate the electron transfer to air.The reaction rate could be easily controlled by selecting the anode catalyst,adjusting the external loading and changing the cathodic electron carrier or oxidants.A maximal power density of 44.9 mW cm^(-2) at room temperature was achieved,while for FDCA production,short-circuit condition was preferred to achieve quick transfer of electrons.For a single batch operation with 0.1 M initial HMF,FDCA yield reached 97.1%.By fed-batch operation,FDCA concentration reached 144.5 g L^(-1) with a total yield of 96%.Ni^(2+)/Ni^(3+) redox couple was the active species mediating the electron transfer,while both experimental and DFT calculation results indicated that HMFCA pathway was the preferred reaction mechanism. 展开更多
关键词 5-hydroxymethylfurfural 2 5-Furandicarboxylic acid ELECTRODEPOSITION Electron transport chain Liquid flow fuel cell
下载PDF
Influences of fractional separation on the structure and reactivity of wheat straw cellulose for producing 5-hydroxymethylfurfural
5
作者 Di Wu Ping Hu +5 位作者 Hui Li Zhidan Xue Hang Lv Yimeng Guo Changwei Hu Liangfang Zhu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第9期154-162,共9页
High-efficient production of 5-hydroxymethylfurfural(HMF),a“sleeping giant”in sustainable chemistry,from cellulose depends significantly on the effective separation of cellulose from lignocellulosic biomass.Herein,w... High-efficient production of 5-hydroxymethylfurfural(HMF),a“sleeping giant”in sustainable chemistry,from cellulose depends significantly on the effective separation of cellulose from lignocellulosic biomass.Herein,we report the fractional separation of wheat straw cellulose(WSC)from wheat straw under solvothermal conditions using a mixed solvent of γ-valerolactone(GVL)and H_(2)O as the separating solvent,wherein the impacts of fractional separation parameters(solvent composition,temperature,and time)on removals of lignin and hemicellulose as well as purity and recovery of cellulose were studied by a Box-Behnken Design of response surface method.The optimization of the solvothermal parameters enabled an optimal fractional separation condition(V_(GVL):~60.0%,T:205℃,t:~1.7 h)that led to a higher purity(89.4%)and recovery(86.7%)of cellulose in WSC.A further correlation of the removals of lignin and hemicellulose as well as purity and recovery of cellulose with the yield of HMF excluded an independent influence of the above factors.Instead,a comprehensive contribution of high fractional separation efficiency(defined as the product of cellulose purity and recovery)and low crystallinity of WSC was found to improve the HMF yield.However,the heat-and freeze-dryings of WSC after the solvothermal separation were found to lower the HMF molar yield because it re-improved the crystallinity of WSC.A high HMF molar yield of 58.6%was achieved after reacting wet-WSC in a mixed solvent of 1,4-dioxane and H_(2)O at 180℃for 20 min,which was 1.5 fold higher than that from microcrystalline cellulose.This work highlights the importance of enhancing the fractional separation efficiency of cellulose from lignocellulosic biomass while avoiding the drying process for future HMF biorefinery. 展开更多
关键词 Biomass SEPARATION DRYING CRYSTALLINITY Wheat straw cellulose 5-hydroxymethylfurfural
下载PDF
Realizing efficient electrochemical oxidation of 5-hydroxymethylfurfural on a freestanding Ni(OH)_(2)/nickel foam catalyst
6
作者 Yunying Huo Cong Guo +6 位作者 Yongle Zhang Jingyi Liu Qiao Zhang Zhiting Liu Guangxing Yang Rengui Li Feng Peng 《Chinese Journal of Catalysis》 SCIE CAS CSCD 2024年第8期282-291,共10页
With the continuous improvement of solar energy production capacity,how to effectively use the electricity generated by renewable solar energy for electrochemical conversion of biomass is a hot topic.Electrochemical c... With the continuous improvement of solar energy production capacity,how to effectively use the electricity generated by renewable solar energy for electrochemical conversion of biomass is a hot topic.Electrochemical conversion of 5-hydroxymethylfurfural(HMF)to biofuels and value-added oxygenated commodity chemicals provides a promising and alternative pathway to convert re-newable electricity into chemicals.Although nickel-based eletrocatalysts are well-known for HMF oxidation,their relatively low intrinsic activity,poor conductivity and stability still limit the poten-tial applications.Here,we report the fabrication of a freestanding nickel-based electrode,in which Ni(OH)_(2) species were in-situ constructed on Ni foam(NF)support using a facile ac-id-corrosion-induced strategy.The Ni(OH)2/NF electrocatalyst exhibits stable and efficient electro-chemical HMF oxidation into 2,5-furandicarboxylic acid(FDCA)with HMF conversion close to 100% with high Faraday efficiency.In-situ formation strategy results in a compact interface between Ni(OH)_(2) and NF,which contributes to good conductivity and stability during electrochemical reac-tions.The superior performance benefits from dynamic cyclic evolution of Ni(OH)_(2) to NiOOH,which acts as the reactive species for HMF oxidation to FDCA.A scaled-up device based on a continu-ous-flow electrolytic cell was also established,giving stable operation with a high FDCA production rate of 27 mg h^(-1)cm^(−2).This job offers a straightforward,economical,and scalable design strategy to design efficient and durable catalysts for electrochemical conversion of valuable chemicals. 展开更多
关键词 Acid-corrosion-induced 5-hydroxymethylfurfural Electrocatalytic oxidation Ni electrocatalysis
下载PDF
Expediting^(*)OH accumulation kinetics on metal-organic frameworks-derived CoOOH with CeO_(2) “accelerator” for electrocatalytic 5-hydroxymethylfurfural oxidation valorization
7
作者 Peiyun Zhou Haokun Pan +3 位作者 Guangtong Hai Xiang Liu Xiubing Huang Ge Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第11期721-732,共12页
In this work,nickel foam supported CeO_(2)-modified CoBDC(BDC stands for terephthalic acid linker)metal-organic frameworks(NF/CoBDC@CeO_(2)) are prepared by hydrothermal and subsequent impregnation methods,which can b... In this work,nickel foam supported CeO_(2)-modified CoBDC(BDC stands for terephthalic acid linker)metal-organic frameworks(NF/CoBDC@CeO_(2)) are prepared by hydrothermal and subsequent impregnation methods,which can be further transformed to NF/CoOOH@CeO_(2) by reconstruction during the electrocatalytic test.The obtained NF/CoOOH@CeO_(2) exhibits excellent performance in electrocatalytic oxidation of 5-hydroxymethylfurfural(HMF) because the introduction of CeO_(2) can optimize the electronic structure of the heterointerface and accelerate the accumulation of ^(*)OH.It requires only a potential of 1.290 V_(RHE) to provide a current density of 50 mA cm^(-2) in 1.0 M KOH+50 mM HMF,which is 222 mV lower than that required in 1,0 M KOH(1.512 V_(RHE)).In addition,density-functional theory calculation results demonstrate that CeO_(2) biases the electrons to the CoOOH side at the heterointerface and promotes the adsorption of ^(*)OH and ^(*)HMF on the catalyst surface,which lower the reaction energy barrier and facilitate the electrocata lytic oxidation process. 展开更多
关键词 CeO_(2) Metal-organic frameworks 5-hydroxymethylfurfural oxidation reaction HETEROINTERFACE Reconstruction
下载PDF
Vanillin Based Polymers:VI.Poly(hydrovanilloin-furfural)and Poly(hydrovanilloin-5-hydroxymethylfurfural)
8
作者 Ananda S.Amarasekara Gabriel Murillo Morales Raghava R.Kommalapati 《Journal of Renewable Materials》 EI CAS 2024年第9期1495-1506,共12页
Renewable resources based polymers provides a sustainable alternative to petroleum derived polymeric materials.As a part of our series on synthesis of vanillin based renewable polymers,we report the synthesis of poly(... Renewable resources based polymers provides a sustainable alternative to petroleum derived polymeric materials.As a part of our series on synthesis of vanillin based renewable polymers,we report the synthesis of poly(hydrovanilloin-furfural)[poly(HVL-Fur)]and poly(hydrovanilloin–5-hydromethylfurfural)[poly(HVL-5-HMF)].Vanillin was dimerized to a mixtures of meso/DL-hydrovanilloins with 94%meso product by electrochemical reductive coupling in aqueous sodium hydroxide using lead electrodes in quantitative yield.Then sodium hydroxide catalyzed condensation of hydrovanilloin with furfural in water at 80℃for 72 h was used to synthesize poly(HVL-Fur)with Mw=8600 g mol^(−1),PDI=1.28 in 78%yield.Similarly,condensation of hydrovanilloin with 5-hydroxymethylfurfural at 80℃for 48 h produced poly(HVL-5-HMF)with Mw=12,100 g mol−1,PDI=1.27 in 68%yield.poly(HVL-Fur)and poly(HVL-5-HMF)showed similar Tg values of 59℃and 60℃,respectively;whereas melting behaviors are dissimilar with Tm 171℃–173℃and 148℃–182℃,respectively. 展开更多
关键词 VANILLIN hydrovanilloin FURFURAL 5-hydroxymethylfurfural renewable polymers
下载PDF
Enhancing the Electrocatalytic Oxidation of 5-Hydroxymethylfurfural Through Cascade Structure Tuning for Highly Stable Biomass Upgrading
9
作者 Xiaoli Jiang Xianhui Ma +7 位作者 Yuanteng Yang Yang Liu Yanxia Liu Lin Zhao Penglei Wang Yagang Zhang Yue Lin Yen Wei 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第12期449-467,共19页
Electrocatalytic 5-hydroxymethylfurfural oxidation reaction(HMFOR)provides a promising strategy to convert biomass derivative to highvalue-added chemicals.Herein,a cascade strategy is proposed to construct Pd-NiCo_(2)... Electrocatalytic 5-hydroxymethylfurfural oxidation reaction(HMFOR)provides a promising strategy to convert biomass derivative to highvalue-added chemicals.Herein,a cascade strategy is proposed to construct Pd-NiCo_(2)O_(4)electrocatalyst by Pd loading on Ni-doped Co3O4 and for highly active and stable synergistic HMF oxidation.An elevated current density of 800 mA cm^(-2)can be achieved at 1.5 V,and both Faradaic efficiency and yield of 2,5-furandicarboxylic acid remained close to 100%over 10 consecutive electrolysis.Experimental and theoretical results unveil that the introduction of Pd atoms can modulate the local electronic structure of Ni/Co,which not only balances the competitive adsorption of HMF and OH-species,but also promote the active Ni^(3+)species formation,inducing high indirect oxidation activity.We have also discovered that Ni incorporation facilitates the Co2+pre-oxidation and electrophilic OH*generation to contribute direct oxidation process.This work provides a new approach to design advanced electrocatalyst for biomass upgrading. 展开更多
关键词 5-hydroxymethylfurfural oxidation reaction Competitive adsorption Cascade strategy Elevated current density
下载PDF
Regulating the oxidation state of Pd to enhance the selective hydrogenation for 5-hydroxymethylfurfural
10
作者 Xin Li Yue Ma +3 位作者 Xuning Wang Jianguo Wu Dong Cao Daojian Cheng 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第8期60-68,共9页
The highly selective hydrogenation of 5-hydroxymethylfurfural to 2,5-dihydroxymethylfuran is an important reaction in the field of biomass hydrogenation,because it is a bridge between biomass resources and chemical in... The highly selective hydrogenation of 5-hydroxymethylfurfural to 2,5-dihydroxymethylfuran is an important reaction in the field of biomass hydrogenation,because it is a bridge between biomass resources and chemical industry.Here,we precisely constructed carbon nitride supported Pd-based catalysts by a simple impregnation-reduction method.By changing the reduction temperature,catalysts with different oxidation state could be precisely constructed.Moreover,the important correlation between the ratio of Pd^(0)/Pd^(2+)and catalytic activity is revealed during the selective hydrogenation of HMF.The Pd/g—C_(3)N_(4)—300 catalyst with a Pd^(0)/Pd^(2+)ratio of 3/2 showed the highest catalytic activity,which could get 96.9%5-hydroxymethylfurfural conversion and 90.3%2,5-dihydroxymethylfuran selectivity.Further density functional theory calculation revealed that the synergistic effect between Pd0and Pd2+in Pd/g—C_(3)N_(4)—300 system could boost the adsorption of the substrate and the dissociation of hydrogen.In this work,we highlight the important correlation between metal oxidation state and catalytic activity,which provides valuable insights for the rational design of precious metal catalysts for hydrogenation reactions. 展开更多
关键词 Pd/g-C_(3)N_(4) Selective hydrogenation 5-hydroxymethylfurfural 2 5-dihydroxymethylfuran Oxidation state
下载PDF
CuO/Co_(3)O_(4)Bifunctional Catalysts for Electrocatalytic 5-Hydroxymethylfurfural Oxidation Coupled Cathodic Ammonia Production
11
作者 Li Zhang Peiyue Jin +8 位作者 Ze Wu Bo Zhou Junchang Jiang Aomeng Deng Qiuyue Li Tanveer Hussain Yiqiong Zhang Hanwen Liu Shuangyin Wang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第5期255-262,共8页
The electrochemical coupling of biomass oxidation and nitrogen conversion presents a potential strategy for high value-added chemicals and nitrogen cycling.Herein,in this work,CuO/Co_(3)O_(4)with heterogeneous interfa... The electrochemical coupling of biomass oxidation and nitrogen conversion presents a potential strategy for high value-added chemicals and nitrogen cycling.Herein,in this work,CuO/Co_(3)O_(4)with heterogeneous interface is successfully constructed as a bifunctional catalyst for the electrooxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid and the electroreduction of nitrate to ammonia(NH_(3)).The open-circuit potential spontaneous experiment shows that more 5-hydroxymethylfurfural molecules are adsorbed in the Helmholtz layer of the CuO/Co_(3)O_(4)composite,which certifies that the CuO/Co_(3)O_(4)heterostructure is conducive to the kinetic adsorption of 5-hydroxymethylfurfural.In situ electrochemical impedance spectroscopy further shows that CuO/Co_(3)O_(4)has faster reaction kinetics and lower reaction potential in oxygen evolution reaction and 5-hydroxymethylfurfural electrocatalytic oxidation.Moreover,CuO/Co_(3)O_(4)also has a good reduction effect on NO_(3)^(-).The ex-situ Raman spectroscopy shows that under the reduction potential,the metal oxide is reduced,and the generated Cu_(2)O can be used as a new active site for the reaction to promote the electrocatalytic conversion of NO_(3)^(-)to NH_(3) synthesis.This work provides valuable guidance for the synthesis of value-added chemicals by 5-hydroxymethylfurfural electrocatalytic oxidation coupled with NO_(3)^(-)while efficiently producing NH_(3). 展开更多
关键词 5-hydroxymethylfurfural oxidation ammonia production bifunctional catalyst CuO/Co_(3)O_(4) electrocatalyst
下载PDF
Limit Test and pH Determination of 5-Hydroxymethylfurfural in Jiulongteng Honey
12
作者 Beiqiao YIN Yanyan CHEN +3 位作者 Lili LIU Shenggao YIN Yanxia CEN Shiman CHEN 《Medicinal Plant》 2024年第3期23-25,29,共4页
[Objectives]To explore the effect of storage time on pH and 5-hydroxymethylfurfural content in Jiulongteng honey.[Methods]The pH of Jiulongteng honey was determined by neutralization titration with sodium hydroxide st... [Objectives]To explore the effect of storage time on pH and 5-hydroxymethylfurfural content in Jiulongteng honey.[Methods]The pH of Jiulongteng honey was determined by neutralization titration with sodium hydroxide standard solution.The content of 5-hydroxymethylfurfural in Jiulongteng honey was determined by HPLC.Chromatographic conditions:ZORBAX SB-C 18 column(250 mm×4.6 mm,5μm)from Agilent Co.,Ltd.,acetonitrile-0.1%formic acid solution(5:95)as mobile phase,flow rate of 0.8 mL/min,5-hydroxymethylfurfural detection wavelength of 284 nm,guanosine detection wavelength of 254 nm.[Results]The pH of 12 batches of Jiulongteng honey was 3.70-3.84 in the new honey stage,3.92-4.05 in the old honey stage 1,and 4.25-4.53 in the old honey stage 2;5-hydroxymethylfurfural was not detected in the new honey stage,5-hydroxymethylfurfural was detected in FM-001 in the old honey stage 1,and 5-hydroxymethylfurfural was detected in most samples in the old honey stage 2.[Conclusions]The pH and 5-hydroxymethylfurfural content of 12 batches of Jiulongteng honey met the requirements within 3 years of storage.There was no 5-hydroxymethylfurfural in Jiulongteng honey,but with the extension of storage time,the detection amount of 5-hydroxymethylfurfural increased significantly even if Jiulongteng honey was stored at low temperature.Therefore,5-hydroxymethylfurfural can be used as an important indicator of honey freshness. 展开更多
关键词 Jiulongteng HONEY 5-hydroxymethylfurfural PH HPLC
下载PDF
5-HMF高效液相色谱检测方法的建立及功能糖与不同产地党参、何首乌和熟地中5-HMF含量分析 被引量:1
13
作者 崔宇擎 张华伟 +2 位作者 王喜生 史万玉 包永占 《中兽医医药杂志》 2024年第1期13-17,共5页
本试验旨在建立5-羟甲基糠醛(5-hydroxymethylfurfural,5-HMF)的高效液相色谱检测方法,检测不同产地党参、制首乌、熟地黄以及5个不同批次功能糖中5-HMF含量。采用C_(18)(4.6 mm×250.0 mm,5μm)色谱柱分离,流动相为甲醇-水(8∶92)... 本试验旨在建立5-羟甲基糠醛(5-hydroxymethylfurfural,5-HMF)的高效液相色谱检测方法,检测不同产地党参、制首乌、熟地黄以及5个不同批次功能糖中5-HMF含量。采用C_(18)(4.6 mm×250.0 mm,5μm)色谱柱分离,流动相为甲醇-水(8∶92),流速为1.0 mL/min,柱温为30℃,进样量为10μL,紫外检测器,检测波长为280 nm。经方法学考察,显示该方法线性关系良好;精密度试验测定峰面积RSD平均值为1.438%;重复性试验显示HPLC重复性良好;稳定性试验峰面积RSD范围为1.338%~7.307%;加标回收率显示良好。中药及功能糖5-HMF含量检测结果显示,党参、制首乌和熟地黄相比,熟地黄中5-HMF含量较高,党参中5-HMF含量较低,其中又以河北产熟地黄中5-HMF含量最高。不同批次功能糖中5-HMF含量无显著性差异,但其含量是河北产熟地黄的90~100倍。通过现代化技术,用功能糖成功复制了中药中的活性成分5-HMF,降低了其生产成本,具有良好的发展前景。 展开更多
关键词 功能糖 党参 何首乌 熟地 5-hmf
下载PDF
甲基2,3-O-磺酰-α-D-葡萄糖苷合成5-羟甲基糠醛(5-HMF)及其衍生物的新方法
14
作者 张菡旭 李敏娇 +2 位作者 杨蓉 李端华 陈国华 《合成化学》 CAS 2024年第3期244-249,共6页
为解决现有的以生物质为起始原料制备5-羟甲基呋喃甲醛(5-HMF)工业化所存在的问题,本研究开发了一种新颖的5-HMF的制备方法。该制备方法以最重要的生物质——纤维素的酸水解得到的无水D-葡萄糖单体为起始原料,经甲苷化、异丙叉化、环硫... 为解决现有的以生物质为起始原料制备5-羟甲基呋喃甲醛(5-HMF)工业化所存在的问题,本研究开发了一种新颖的5-HMF的制备方法。该制备方法以最重要的生物质——纤维素的酸水解得到的无水D-葡萄糖单体为起始原料,经甲苷化、异丙叉化、环硫酸酯化和高温脱水反应,最终获得5-HMF。该方法中,各步所获得的中间体无需纯化即可用于后续制备过程,制备中所涉及到的各类型试剂廉价易获取,因此该方法具有较好的工业应用前景。 展开更多
关键词 葡萄糖 糖类生物质 5-羟甲基呋喃甲醛 5-hmf 硫酸酯
下载PDF
Facet effect on the reconstructed Cu-catalyzed electrochemical hydrogenation of 5-hydroxymethylfurfural(HMF) towards 2,5-bis(hydroxymethy)furan (BHMF) 被引量:2
15
作者 Mengxia Li Tianxi Zheng +7 位作者 Dongfei Lu Shiwei Dai Xin Chen Xinchen Pan Dibo Dong Rengui Weng Gang Xu Fanan Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第9期101-111,共11页
The electrochemical hydrogenation of HMF to BHMF is an elegant alternative to the conventio nal thermocatalytic route for the production of high-value-added chemicals from biomass resources.In virtue of the wide poten... The electrochemical hydrogenation of HMF to BHMF is an elegant alternative to the conventio nal thermocatalytic route for the production of high-value-added chemicals from biomass resources.In virtue of the wide potential window with promising Faradic efficiency(FE) towards BHMF,Cu-based electrode has been in the center of investigation.However,its structure-activity relationship remains ambiguous and its intrinsic catalytic activity is still unsatisfactory.In this work,we develop a two-step oxidation-reduction strategy to reconstruct the surface atom arrangement of the Cu foam(CF).By combination of multiple quasi-situ/in-situ techniques and density functional theory(DFT) calculation,the critical factor that governs the reaction is demonstrated to be facet effect of the metallic Cu crystal:Cu(110) facet accounts for the most favorable surface with enhanced chemisorption with reactants and selective production of BHMF,while Cu(100) facet might trigger the accumulation of the by-product 5,5'-bis(hydroxy methy)hydrofurion(BHH).With the optimized composition of the facets on the reconstructed Cu(OH)_(2)-ER/CF,the performance could be noticeably enhanced with a BHMF FE of 92.3% and HMF conversion of 98.5% at a potential of -0.15 V versus reversible hydrogen electrode(vs.RHE) in 0.1 M KOH solution.This work sheds light on the incomplete mechanistic puzzle for Cu-catalyzed electrochemical hydrogenation of HMF to BHMF,and provides a theoretical foundation for further precise design of highly efficient catalytic electrodes. 展开更多
关键词 Electrochemical hydrogenation Biomass conversion 5-hydroxymethylfurfural Cu electrode Facet effect
下载PDF
Au^(δ-)-O_(v)-Ti^(3+):Active site of MO_(x)-Au/TiO_(2) catalysts for the aerobic oxidation of 5-hydroxymethylfurfural 被引量:1
16
作者 Weiyao Yang Mengchen Fu +2 位作者 Chenyu Yang Yiwen Zhang Chun Shen 《Green Energy & Environment》 SCIE EI CAS CSCD 2023年第3期785-797,共13页
Despite wide applications of noble metal-based catalysts in 5-hydroxymethylfurfural(HMF)oxidation,promoting the catalytic performance at low loading amounts still remains a significant challenge.Herein,a series of met... Despite wide applications of noble metal-based catalysts in 5-hydroxymethylfurfural(HMF)oxidation,promoting the catalytic performance at low loading amounts still remains a significant challenge.Herein,a series of metal oxide modified MO_(x)-Au/TiO_(2)(M=Fe,Co,Ni)catalysts with low Au loading amount of 0.5 wt%were synthesized.Addition of transition metal oxides promotes electron transfer and generation of the Au^(δ-)-O_(v)-Ti^(3+)interface.A combination study reveals that the dual-active site(Au^(δ-)-O_(v)-Ti^(3+))governs the catalytic performance of the ratedetermining step,namely hydroxyl group oxidation.Au^(δ-) site facilitates chemisorption and activation of O_(2) molecules.At the same time,O_(v)-Ti^(3+) site acts as the role of“killing two birds with one stone”:enhancing adsorption of both reactants,accelerating the activation and dissociation of H_(2)O,and facilitating activation of the adsorbed O_(2).Besides,superoxide radicals instead of base is the active oxygen species during the rate-determining step.On this basis,a FDCA yield of 71.2% was achieved under base-free conditions,complying with the“green chemistry”principle.This work provides a new strategy for the transition metal oxides modification of Au-based catalysts,which would be constructive for the rational design of other heterogeneous catalysts. 展开更多
关键词 5-hydroxymethylfurfural Base-free oxidation Interfacial catalysis Active oxygen species
下载PDF
热加工食品中晚期糖基化终末产物和5-羟甲基糠醛的形成、检测与控制
17
作者 陆胜民 黄子馨 +2 位作者 李小琼 郑美瑜 韩永斌 《浙江农业学报》 CSCD 北大核心 2024年第6期1458-1468,共11页
食品加工过程中的美拉德反应有助于形成一些热诱导毒性产物,包括晚期糖基化终末产物(advanced glycation end products,AGEs)和5-羟甲基糠醛(5-hydroxymethylfurfural,5-HMF)。食源性AGEs在体内的积累和循环与糖尿病并发症的发生有关,... 食品加工过程中的美拉德反应有助于形成一些热诱导毒性产物,包括晚期糖基化终末产物(advanced glycation end products,AGEs)和5-羟甲基糠醛(5-hydroxymethylfurfural,5-HMF)。食源性AGEs在体内的积累和循环与糖尿病并发症的发生有关,同时可能诱发氧化应激、炎症和动脉粥样硬化。5-HMF的代谢物5-磺基氧甲基糠醛(5-sulfooxymethylfurfural,5-SMF)有潜在基因毒性和致癌性。如何控制热加工食品中这些危害物的形成已成为食品行业的关注焦点。本文从美拉德反应和焦糖化反应两条途径探究了AGEs和5-HMF的形成机理,并对近5年二者的检测方法进行了综述,阐述了各类方法的优缺点,以期为建立二者的通用检测方法奠定基础。在此基础上,从削减前体物质的供给、阻断中间体的转化,以及去除已经生成的AGEs和5-HMF这3个方面着手,综述了近年来相应所采用的抑制策略,以期为AGEs和5-HMF在食品中的控制及热加工食品质量与安全管理提供理论依据。 展开更多
关键词 晚期糖基化终末产物(AGEs) 5-羟甲基糠醛(5-hmf) 形成途径 检测方法 控制措施
下载PDF
Conversion of Cellulose to 5-Hydroxymethylfurfural in Water- Tetrahydrofuran and Byproducts Identification 被引量:1
18
作者 石宁 刘琪英 +3 位作者 王铁军 张琦 涂军令 马隆龙 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2014年第6期711-717,I0004,共8页
Conversion of cellulose into platform chemical 5-hydroxymethylfurfural (HMF) in water-tetrahydrofuran (THF) co-solvents under acidic condition was studied. 38.6% of HMF was obtained with low cellulose concentratio... Conversion of cellulose into platform chemical 5-hydroxymethylfurfural (HMF) in water-tetrahydrofuran (THF) co-solvents under acidic condition was studied. 38.6% of HMF was obtained with low cellulose concentration of 2.4wt%, but levulinic acid (LA) and solid humins became the main products with high cellulose concentration. The soluble byproducts were analyzed by high performance liquid chromatography/multiple stage tandem mass spec-trometry, and chemicals with formula of C9H16O4、 C10H14O4、 C11H12O4、C12H10O5 and C12H16O8 were detected. THF could participate in the reaction via ring-opening into 1,4-butanediol followed by esterification with LA into C9H16O4 or etherification with HMF into C10H14O4. C11H12O4 was formed by esterification of HMF with LA, C12H10O5 was formed by self-etherification of HMF, while C12H16O8 was formed by acetalization of HMF with glucose. Self-etherification of HMF and etherification of HMF with 1,4-butanediol were identified as two main side reactions. 展开更多
关键词 CELLULOSE 5-hydroxymethylfurfural TETRAHYDROFURAN ETHERIFICATION High performance liquid chromatography/multiple stage tandem mass spectrometry
下载PDF
Bibliometric Exploration of Conversion of Sugars to Furan Derivatives 2,5-Dimethylfuran by Catalytic Process
19
作者 Nuttida Chanhom Tossapon Katongtung Nakorn Tippayawong 《Energy Engineering》 EI 2024年第12期3649-3665,共17页
This study investigated the conversion of sugars into furan derivatives,specifically 2,5-dimethylfuran,through catalytic processes using bibliographic analysis.This method evaluates scientific outcomes and impact with... This study investigated the conversion of sugars into furan derivatives,specifically 2,5-dimethylfuran,through catalytic processes using bibliographic analysis.This method evaluates scientific outcomes and impact within a specific field by analyzing data such as publication trends,references,collaborative models,leading authors,and institutions.The study utilized data fromthe reliable Scopus database and conducted analysis using the visualization of similarity(VOS)viewer program to gain in-depth insights into the current state of research on this topic.The findings revealed that“5 hydroxymethyl furfural”was the most used keyword,followed by“biomass”and“catalysis.”The research trend remained stable and popular from 2006 to 2022,with a decline beginning in 2023.The growing number of publications indicates increasing interest and importance of these topics.Notably,China led in the number of publications,with 80%more than the second-rankedUnited States,followed closely by India in the third place.The study also highlighted citation linkages between authors and countries,providing a comprehensive overview of research on converting sugars to furan derivatives,particularly 2,5-dimethylfuran,through catalytic processes. 展开更多
关键词 BIOMASS clean energy DEHYDRATION HYDROGENATION 5-hydroxymethylfurfural
下载PDF
Preparation of 5-Hydroxymethylfurfural from Cellulose via Fast Depolymerization and Consecutively Catalytic Conversion 被引量:2
20
作者 赖斌 赵毅 闫立峰 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2013年第3期355-360,I0004,共7页
The conversion of cellulose to 5-hydroxymethylfurfural (HMF) has been investigated by a one-pot consecutive reaction. At first, cellulose was depolymerised into glucose via a fast degradation of cellulose in molten ... The conversion of cellulose to 5-hydroxymethylfurfural (HMF) has been investigated by a one-pot consecutive reaction. At first, cellulose was depolymerised into glucose via a fast degradation of cellulose in molten ZnCI~ in the presence of hydrochloric acid, and the yield of glucose is 75% in 120 s at reaction temperature of 95 ℃. Then, DMSO was used as solvent and different kinds of metal chloride were added as catalysts, and the conversion was carried out continuously at 110-130 ℃ for 0.5-4 h. The yield of HMF was 53% when CrC13 were used as catalyst. The one-pot two steps conversion was carried out at atmosphere pressure, and it is a simple route to prepare HMF from lignocellulosic feedstock on a large scale. 展开更多
关键词 CELLULOSE Rapid hydrolysis 5-hydroxymethylfurfural
下载PDF
上一页 1 2 13 下一页 到第
使用帮助 返回顶部