The AA5052 aluminum alloy is widely used in automobile and aerospace manufacturing,and with the development of light-weight alloys,it is required that these materials exhibit better mechanical properties.Previous stud...The AA5052 aluminum alloy is widely used in automobile and aerospace manufacturing,and with the development of light-weight alloys,it is required that these materials exhibit better mechanical properties.Previous studies have demonstrated that the addition of Sc to aluminum alloys can improve both the microstructure and properties of the alloys.In this study,the effect of Sc on the Fe-rich phase and properties of the AA5052 aluminum alloy was studied by adding 0%,0.05%,0.2%,and 0.3%Sc.The results show that with the increase of Sc,the coarse needle-like Fe-rich phase gradually transforms into Chinese-script and then nearly spherical particles,reduce the size of Fe-rich phase,and refine the grain with increase of high angle grain boundaries(HAGBs).These microstructure changes enhance the strength of the AA5052 alloy through Sc addition.The ductility of the alloy is obviously improved because the addition of a lower amount of Sc changes the morphology of Fe-rich phase from needle-like into a Chinese-script,and it is subsequently reduced as a result of significant increase in HAGBs with increasing Sc content.展开更多
The microstructures and mechanical properties of homogenized-rolled AA5052 aluminum alloys with different rolling reductions and following annealing treatments were investigated by optical microscope, scanning electro...The microstructures and mechanical properties of homogenized-rolled AA5052 aluminum alloys with different rolling reductions and following annealing treatments were investigated by optical microscope, scanning electron microscope, X-ray diffractometer, micro-hardness and tensile tests. The results show that with increasing rolling reduction, the equiaxed grains are elongated along the rolling direction obviously, and accumulation of rolling reduction increases the work hardening effect, which results in the enhanced strength and degraded plasticity. When rolling reduction is 87%, the ultimate tensile strength reaches 325 MPa but elongation is only 2.5%. There are much more secondary phase precipitates after annealing treatment. With an increase of annealing temperature, the amount of precipitates increases and work hardening diminishes continuously. The elongation is improved to ~23% but the tensile strength is decreased to 212 MPa after annealing at 300 °C for 4 h, which are comparable to those of as-homogenized alloy.展开更多
Based on the design of the multi-row sprocket with a new tooth profile,a cold semi-precision forging process for manufacturing 5052 aluminum alloy multi-row sprocket was presented.Through simulating the forging proces...Based on the design of the multi-row sprocket with a new tooth profile,a cold semi-precision forging process for manufacturing 5052 aluminum alloy multi-row sprocket was presented.Through simulating the forging process of 5052 aluminum alloy sprocket billet with 3D rigid-viscoplastic FEM,both the distributions of flow velocity field in axial(U_Z),radial(U_R) and circumferential(U_θ) directions and the curves of velocity component in different deformation regions were respectively obtained.By comparison and analysis of the velocity varying curves,the velocity component relation conditions for filling the die cavity were clarified.It shows that when the die cavity is almost fully filled,the circumferential velocity U_θ increases sharply,implying that U_θplays a key role in fully filling the die cavity.展开更多
In this research, EIS (electrochemical impedance spectroscopy) technique was utilized to study the pitting corrosion behaviour of AA5083-H321 aluminum-magnesium alloy in 3.5% NaCl solution. Impedance spectra were ob...In this research, EIS (electrochemical impedance spectroscopy) technique was utilized to study the pitting corrosion behaviour of AA5083-H321 aluminum-magnesium alloy in 3.5% NaCl solution. Impedance spectra were obtained during 240 h of exposure of the sample to the test solution. The surface and cross-section of the samples were studied by scanning electron microscopy (SEM) and EDAX (energy dispersive analysis of X-ray) analysis. The results indicated that as the resistance of the passive layer on intermetallic particles is very small, this parameter on the sample surface layers is controlled by that of pure passive layer. However, the capacitors in the proposed equivalent circuit are replaced with the constant phase elements (CPE), due to non-uniformity and occurrence of pitting corrosion on the surface. The outward diffusion of Al^+3 ions through the passive layer and the thickening of this layer cause the impedance decrease in the first 24 h and increase afterwards. The detachment of intermetallic particles from some of pits and the accumulation of the corrosion products inside some others are factors that prevents the continuation of cathodic reactions on the top of the intermetallic particles.展开更多
Flow-induced corrosion consists electrochemical and mechanical components. The present paper has to assessed the role of chloride ion and dissolved oxygen in the electrochemical component of flow induced corrosion for...Flow-induced corrosion consists electrochemical and mechanical components. The present paper has to assessed the role of chloride ion and dissolved oxygen in the electrochemical component of flow induced corrosion for AA5083-H321 aluminum-magnesium alloy which is extensively used in the construction of high-speed boats, submarines, hovercrafts, and desalination systems, in NaCI solutions. Electrochemical tests were carried out at flow velocities of 0, :2, 5, 7 and 10 m/s, in aerated and deaerated NaCI solutions with different sodium chloride concentrations. The results showed that the high rate of oxygen reduction under hydrodynamic conditions causes an increase in the density of pits on the surface. The increase of chloride ions concentration under flow conditions accelerates the rate of anodic reactions, but have no influence on the cathodic reactions. Thus, in the current work, it was found that under flow conditions, due to the elimination of corrosion products inside the pits, corrosion resistance of the alloy is increased.展开更多
The microstructure and mechanical properties of rheocasted 5052 aluminum alloy were investigated.The semi-solid slurry of this alloy was prepared by ultrasonic vibration(USV) process and then shaped by gravity casting...The microstructure and mechanical properties of rheocasted 5052 aluminum alloy were investigated.The semi-solid slurry of this alloy was prepared by ultrasonic vibration(USV) process and then shaped by gravity casting(GC) and high press diecasting(HPDC).The experimental results indicate that fine and globular primary α(Al) particles are distributed uniformly in the rheocasting samples.The tensile strength and elongation of the rheo-GC sample are 191 MPa and 7.5%,respectively.Compared with the conventional GC samples,they increase by 22.4% and 82.9% respectively.The tensile strength and elongation of the rheo-HPDC samples reach 225 MPa and 8.6%,respectively,and they are 14.8% and 75.5% higher than those of the conventional HPDC samples,respectively.It is also found that the ductile fracture mode prevails in the rheocasting samples.展开更多
Dissimilar friction stir welding between 5052 Al alloy and AZ31 Mg alloy with the plate thickness of 6 mm was investigated.Sound weld was obtained at rotation speed of 600 r/min and welding speed of 40 mm/min.Compared...Dissimilar friction stir welding between 5052 Al alloy and AZ31 Mg alloy with the plate thickness of 6 mm was investigated.Sound weld was obtained at rotation speed of 600 r/min and welding speed of 40 mm/min.Compared with the base materials,the microstructure of the stir zone is greatly refined.Complex flow pattern characterized by intercalation lamellae is formed in the stir zone.Microhardness measurement of the dissimilar welds presents an uneven distribution due to the complicated microstructure of the weld,and the maximum value of microhardness in the stir zone is twice higher than that of the base materials. The tensile fracture position locates at the advancing side(aluminum side),where the hardness distribution of weld shows a sharp decrease from the stir zone to 5052 base material.展开更多
In order to overcome the limitation of hydro-rim deep drawing, a new process of hydrodynamic deep drawing (HDD) with independent radial hydraulic pressure was proposed. By employing the dynamic explicit analytical s...In order to overcome the limitation of hydro-rim deep drawing, a new process of hydrodynamic deep drawing (HDD) with independent radial hydraulic pressure was proposed. By employing the dynamic explicit analytical software ETA/DynaformS.5 which is based on LS-DYNA3D, the effects of independent radia! hydraulic pressure on the stress, strain and the sheet-thickness of aluminum-magnesium cylindrical cup with a hemispherical bottom were analyzed by numerical simulation. The feature of stress distribution is that there exists a stress-dividing circle in the flange, and the radius of dividing circle was determined by theoretical analysis and stimulation. The experimental results indicate that the reasonable match of independent radial hydraulic pressure and liquid chamber pressure can effectively reduce the thinning at the bottom of hemisphere, decrease the radial stress-strain, and improve the drawing limit of aiuminum-magnesium alloy cylindrical cup.展开更多
Friction stir butt welding (FSW) between A5052-O aluminum alloy plates with a thickness of 2 mm was performed.The rotation speeds of the welding tool were 2000 and 3000 r/min,respectively.The traverse speed was ranged...Friction stir butt welding (FSW) between A5052-O aluminum alloy plates with a thickness of 2 mm was performed.The rotation speeds of the welding tool were 2000 and 3000 r/min,respectively.The traverse speed was ranged from 100 mm/min to 900 mm/min.The defect-free welds with the very smooth surface morphology were successfully obtained,except for at the welding condition of 3000 r/min and 100 mm/min.The onion ring structure was observed in the friction-stir-welded zone (SZ) at the condition of 2000 r/min and 100 mm/min.For all the welding conditions,the grain size of the SZ was smaller than that of the base metal,and was decreased with the decrease of the tool rotation speed and with the increase of the tool traverse speed.The stir zone exhibited higher average hardness than the base metal.The decrease of the tool rotation speed and the increase of the tool traverse speed resulted in the increase in the average hardness of the SZ.The tensile strength of the FSWed plates was similar to that of the base metal,except for at the welding condition of 3000 r/min and 100 mm/min.The total elongation of the FSWed plates was lower than that of the base metal.展开更多
基金supported by the Key Research&Development Program of Yunnan Province(Grant numbers 202103AA080017,202203AE140011).
文摘The AA5052 aluminum alloy is widely used in automobile and aerospace manufacturing,and with the development of light-weight alloys,it is required that these materials exhibit better mechanical properties.Previous studies have demonstrated that the addition of Sc to aluminum alloys can improve both the microstructure and properties of the alloys.In this study,the effect of Sc on the Fe-rich phase and properties of the AA5052 aluminum alloy was studied by adding 0%,0.05%,0.2%,and 0.3%Sc.The results show that with the increase of Sc,the coarse needle-like Fe-rich phase gradually transforms into Chinese-script and then nearly spherical particles,reduce the size of Fe-rich phase,and refine the grain with increase of high angle grain boundaries(HAGBs).These microstructure changes enhance the strength of the AA5052 alloy through Sc addition.The ductility of the alloy is obviously improved because the addition of a lower amount of Sc changes the morphology of Fe-rich phase from needle-like into a Chinese-script,and it is subsequently reduced as a result of significant increase in HAGBs with increasing Sc content.
基金supported by the National Natural Science Foundation of China (Nos. 51775563, 52275394)the Project of State Key Laboratory of HighPerformance Complex Manufacturing, Central South University, China (No. ZZYJKT2020-02)。
基金Project(2011DFR50950)supported by the International Science and Technology Cooperation Program of ChinaProject(2012BAF09B04)supported by the National Key Technology Research and Development Program of ChinaProject(CSTC2013JCYJC60001)supported by Chongqing Science and Technology Commission,China
文摘The microstructures and mechanical properties of homogenized-rolled AA5052 aluminum alloys with different rolling reductions and following annealing treatments were investigated by optical microscope, scanning electron microscope, X-ray diffractometer, micro-hardness and tensile tests. The results show that with increasing rolling reduction, the equiaxed grains are elongated along the rolling direction obviously, and accumulation of rolling reduction increases the work hardening effect, which results in the enhanced strength and degraded plasticity. When rolling reduction is 87%, the ultimate tensile strength reaches 325 MPa but elongation is only 2.5%. There are much more secondary phase precipitates after annealing treatment. With an increase of annealing temperature, the amount of precipitates increases and work hardening diminishes continuously. The elongation is improved to ~23% but the tensile strength is decreased to 212 MPa after annealing at 300 °C for 4 h, which are comparable to those of as-homogenized alloy.
基金Projects(51175363,51274149)supported by the National Natural Science Foundation of China
文摘Based on the design of the multi-row sprocket with a new tooth profile,a cold semi-precision forging process for manufacturing 5052 aluminum alloy multi-row sprocket was presented.Through simulating the forging process of 5052 aluminum alloy sprocket billet with 3D rigid-viscoplastic FEM,both the distributions of flow velocity field in axial(U_Z),radial(U_R) and circumferential(U_θ) directions and the curves of velocity component in different deformation regions were respectively obtained.By comparison and analysis of the velocity varying curves,the velocity component relation conditions for filling the die cavity were clarified.It shows that when the die cavity is almost fully filled,the circumferential velocity U_θ increases sharply,implying that U_θplays a key role in fully filling the die cavity.
文摘In this research, EIS (electrochemical impedance spectroscopy) technique was utilized to study the pitting corrosion behaviour of AA5083-H321 aluminum-magnesium alloy in 3.5% NaCl solution. Impedance spectra were obtained during 240 h of exposure of the sample to the test solution. The surface and cross-section of the samples were studied by scanning electron microscopy (SEM) and EDAX (energy dispersive analysis of X-ray) analysis. The results indicated that as the resistance of the passive layer on intermetallic particles is very small, this parameter on the sample surface layers is controlled by that of pure passive layer. However, the capacitors in the proposed equivalent circuit are replaced with the constant phase elements (CPE), due to non-uniformity and occurrence of pitting corrosion on the surface. The outward diffusion of Al^+3 ions through the passive layer and the thickening of this layer cause the impedance decrease in the first 24 h and increase afterwards. The detachment of intermetallic particles from some of pits and the accumulation of the corrosion products inside some others are factors that prevents the continuation of cathodic reactions on the top of the intermetallic particles.
文摘Flow-induced corrosion consists electrochemical and mechanical components. The present paper has to assessed the role of chloride ion and dissolved oxygen in the electrochemical component of flow induced corrosion for AA5083-H321 aluminum-magnesium alloy which is extensively used in the construction of high-speed boats, submarines, hovercrafts, and desalination systems, in NaCI solutions. Electrochemical tests were carried out at flow velocities of 0, :2, 5, 7 and 10 m/s, in aerated and deaerated NaCI solutions with different sodium chloride concentrations. The results showed that the high rate of oxygen reduction under hydrodynamic conditions causes an increase in the density of pits on the surface. The increase of chloride ions concentration under flow conditions accelerates the rate of anodic reactions, but have no influence on the cathodic reactions. Thus, in the current work, it was found that under flow conditions, due to the elimination of corrosion products inside the pits, corrosion resistance of the alloy is increased.
基金Project(2007AA03Z557) supported by the National High-Tech Research and Development Program of ChinaProject (50775086) supported by the National Natural Science Foundation of China
文摘The microstructure and mechanical properties of rheocasted 5052 aluminum alloy were investigated.The semi-solid slurry of this alloy was prepared by ultrasonic vibration(USV) process and then shaped by gravity casting(GC) and high press diecasting(HPDC).The experimental results indicate that fine and globular primary α(Al) particles are distributed uniformly in the rheocasting samples.The tensile strength and elongation of the rheo-GC sample are 191 MPa and 7.5%,respectively.Compared with the conventional GC samples,they increase by 22.4% and 82.9% respectively.The tensile strength and elongation of the rheo-HPDC samples reach 225 MPa and 8.6%,respectively,and they are 14.8% and 75.5% higher than those of the conventional HPDC samples,respectively.It is also found that the ductile fracture mode prevails in the rheocasting samples.
基金Project(B01B7070270)supported by the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry,China
文摘Dissimilar friction stir welding between 5052 Al alloy and AZ31 Mg alloy with the plate thickness of 6 mm was investigated.Sound weld was obtained at rotation speed of 600 r/min and welding speed of 40 mm/min.Compared with the base materials,the microstructure of the stir zone is greatly refined.Complex flow pattern characterized by intercalation lamellae is formed in the stir zone.Microhardness measurement of the dissimilar welds presents an uneven distribution due to the complicated microstructure of the weld,and the maximum value of microhardness in the stir zone is twice higher than that of the base materials. The tensile fracture position locates at the advancing side(aluminum side),where the hardness distribution of weld shows a sharp decrease from the stir zone to 5052 base material.
基金Funded by the National Natural Science Foundation of China(Nos.50525516, 50875062)
文摘In order to overcome the limitation of hydro-rim deep drawing, a new process of hydrodynamic deep drawing (HDD) with independent radial hydraulic pressure was proposed. By employing the dynamic explicit analytical software ETA/DynaformS.5 which is based on LS-DYNA3D, the effects of independent radia! hydraulic pressure on the stress, strain and the sheet-thickness of aluminum-magnesium cylindrical cup with a hemispherical bottom were analyzed by numerical simulation. The feature of stress distribution is that there exists a stress-dividing circle in the flange, and the radius of dividing circle was determined by theoretical analysis and stimulation. The experimental results indicate that the reasonable match of independent radial hydraulic pressure and liquid chamber pressure can effectively reduce the thinning at the bottom of hemisphere, decrease the radial stress-strain, and improve the drawing limit of aiuminum-magnesium alloy cylindrical cup.
基金financially supported by the Ministry of Education,Science Technology(MEST)and National Research Foundation of Korea(NRF)through the Human Resource Training Project for Regional Innovationby the development program of local science park funded by the ULSAN Metropolitan City and the Ministry of Education,Science and Technology(MEST)
文摘Friction stir butt welding (FSW) between A5052-O aluminum alloy plates with a thickness of 2 mm was performed.The rotation speeds of the welding tool were 2000 and 3000 r/min,respectively.The traverse speed was ranged from 100 mm/min to 900 mm/min.The defect-free welds with the very smooth surface morphology were successfully obtained,except for at the welding condition of 3000 r/min and 100 mm/min.The onion ring structure was observed in the friction-stir-welded zone (SZ) at the condition of 2000 r/min and 100 mm/min.For all the welding conditions,the grain size of the SZ was smaller than that of the base metal,and was decreased with the decrease of the tool rotation speed and with the increase of the tool traverse speed.The stir zone exhibited higher average hardness than the base metal.The decrease of the tool rotation speed and the increase of the tool traverse speed resulted in the increase in the average hardness of the SZ.The tensile strength of the FSWed plates was similar to that of the base metal,except for at the welding condition of 3000 r/min and 100 mm/min.The total elongation of the FSWed plates was lower than that of the base metal.