【目的】干旱是限制小麦生产最主要的逆境因子之一。挖掘、鉴定优异抗旱新种质、克隆抗旱新基因,以期丰富我国小麦抗旱遗传基础,为小麦抗旱遗传改良提供材料。【方法】以198份从国际干旱地区农业研究中心(ICARDA)引进的抗旱种质为材料,...【目的】干旱是限制小麦生产最主要的逆境因子之一。挖掘、鉴定优异抗旱新种质、克隆抗旱新基因,以期丰富我国小麦抗旱遗传基础,为小麦抗旱遗传改良提供材料。【方法】以198份从国际干旱地区农业研究中心(ICARDA)引进的抗旱种质为材料,采用PEG-6000模拟干旱方法,通过调查苗期干旱和正常条件下的地上部鲜重、地下部鲜重、生物量和根冠比4个性状,鉴定、评价其抗旱性,结合660K SNP芯片对其抗旱性进行全基因组关联分析,发掘抗旱性相关染色体区间及关联位点,结合干旱胁迫下根等多组织的表达量数据,筛选抗旱性相关基因,最后以强抗旱性品系IR214和干旱敏感品系IR36为材料,利用qRT-PCR方法对候选基因进行验证,并分析关键候选基因的优异单倍型。【结果】干旱胁迫下,小麦的生长发育受到显著抑制,各性状表型均显著低于正常对照,不同小麦品系间也表现出显著差异,4个性状在2种处理下均呈现正态分布,变异系数为0.363—0.760,多样性指数为0.310—0.400;基于加权隶属函数值(D值)综合评价各个品种的抗旱性,发现品系IR214的D值最大,为0.851,其次为IR92、IR213、IR235和IR218等,它们可作为新的优异抗旱种质;在此基础上,通过全基因组关联分析(genome-wide association study,GWAS),共检测到102个与4个性状抗旱系数显著关联的SNP位点,表型变异解释率范围为1.07%—38.70%,其中,与地上部鲜重相关的位点60个、地下部鲜重相关位点1个、生物量相关位点36个以及根冠比相关位点5个;基于基因组注释信息,筛选到31个抗旱相关基因,结合根等不同组织的RNA-seq数据,筛选出4个抗旱候选基因,对差异表达的候选基因进行qRT-PCR验证,鉴定到2个关键抗旱候选基因;最后,分析候选基因的单倍型效应,发现TraesCS6A02G048600的AX-86174509位点,2种基因型在抗旱性状上具有显著差异,是潜在的功能位点。【结论】共检测到102个与苗期抗旱性显著关联的位点,筛选出TraesCS5B02G053500和TraesCS6A02G048600 2个关键候选基因,TraesCS6A02G048600的AX-86174509位点是潜在的抗旱性功能位点。展开更多
[目的]小麦遗传图谱是进行小麦染色体分析和研究表型变异的遗传基础。通过利用传统分子标记和现代基因芯片技术相结合,构建高密度遗传图谱,重点开展主要产量主要构成要素——粒重的初级基因定位,确定影响粒重的主效QTL位点,为开发粒重C...[目的]小麦遗传图谱是进行小麦染色体分析和研究表型变异的遗传基础。通过利用传统分子标记和现代基因芯片技术相结合,构建高密度遗传图谱,重点开展主要产量主要构成要素——粒重的初级基因定位,确定影响粒重的主效QTL位点,为开发粒重CAPS分子标记及在分子标记辅助育种提供依据和指导,并为利用小麦粒重次级群体进行精细定位和基因挖掘奠定基础。[方法]利用90 K小麦SNP基因芯片、DArt芯片技术及传统的分子标记技术,以包含173个家系的RIL群体(F9:10重组自交系)为材料,构建高密度遗传图谱,并利用QTL network2.0进行了3年共4环境粒重QTL分析。[结果]构建了覆盖小麦21条染色体的高密度遗传图谱,该图谱共含有6 244个多态性标记,其中SNP标记6 001个、DAr T标记216个、SSR标记27个,覆盖染色体总长度4 875.29 c M,标记间平均距离0.78 c M。A、B、D染色体组分别有2 390、3 386和468个标记,分别占总标记数的38.3%、54.3%和7.5%;3个染色体组标记间平均距离分别为0.80、0.75和0.80 c M。用该分子遗传图谱对4个环境下粒重进行QTL分析,检测到位于1B、4B、5B、6A染色体上9个加性QTL,效应值大于10%的QTL位点有QGW4B-17、QGW4B-5、QGW4B-2、QGW6A-344、QGW6A-137;其中QGW4B-17在多个环境下检测到,其贡献率为16%—33.3%,可增加粒重效应值2.30-2.97g,该位点是稳定表达的主效QTL。9个QTL的加性效应均来自大粒母本山农01-35,单个QTL位点加性效应可增加千粒重1.09—2.97 g。[结论]构建的覆盖小麦21条染色体的分子遗传图谱共含有6 241个多态性标记,标记间平均距离为0.77 c M。利用该图谱检测到位于1B、4B、5B、6A染色体上9个控制粒重的加性QTL,其中QGW4B-17是稳定表达的主效QTL位点,贡献率为16.5%—33%,可增加粒重效应值2.30—2.97 g。展开更多
文摘【目的】干旱是限制小麦生产最主要的逆境因子之一。挖掘、鉴定优异抗旱新种质、克隆抗旱新基因,以期丰富我国小麦抗旱遗传基础,为小麦抗旱遗传改良提供材料。【方法】以198份从国际干旱地区农业研究中心(ICARDA)引进的抗旱种质为材料,采用PEG-6000模拟干旱方法,通过调查苗期干旱和正常条件下的地上部鲜重、地下部鲜重、生物量和根冠比4个性状,鉴定、评价其抗旱性,结合660K SNP芯片对其抗旱性进行全基因组关联分析,发掘抗旱性相关染色体区间及关联位点,结合干旱胁迫下根等多组织的表达量数据,筛选抗旱性相关基因,最后以强抗旱性品系IR214和干旱敏感品系IR36为材料,利用qRT-PCR方法对候选基因进行验证,并分析关键候选基因的优异单倍型。【结果】干旱胁迫下,小麦的生长发育受到显著抑制,各性状表型均显著低于正常对照,不同小麦品系间也表现出显著差异,4个性状在2种处理下均呈现正态分布,变异系数为0.363—0.760,多样性指数为0.310—0.400;基于加权隶属函数值(D值)综合评价各个品种的抗旱性,发现品系IR214的D值最大,为0.851,其次为IR92、IR213、IR235和IR218等,它们可作为新的优异抗旱种质;在此基础上,通过全基因组关联分析(genome-wide association study,GWAS),共检测到102个与4个性状抗旱系数显著关联的SNP位点,表型变异解释率范围为1.07%—38.70%,其中,与地上部鲜重相关的位点60个、地下部鲜重相关位点1个、生物量相关位点36个以及根冠比相关位点5个;基于基因组注释信息,筛选到31个抗旱相关基因,结合根等不同组织的RNA-seq数据,筛选出4个抗旱候选基因,对差异表达的候选基因进行qRT-PCR验证,鉴定到2个关键抗旱候选基因;最后,分析候选基因的单倍型效应,发现TraesCS6A02G048600的AX-86174509位点,2种基因型在抗旱性状上具有显著差异,是潜在的功能位点。【结论】共检测到102个与苗期抗旱性显著关联的位点,筛选出TraesCS5B02G053500和TraesCS6A02G048600 2个关键候选基因,TraesCS6A02G048600的AX-86174509位点是潜在的抗旱性功能位点。
文摘[目的]小麦遗传图谱是进行小麦染色体分析和研究表型变异的遗传基础。通过利用传统分子标记和现代基因芯片技术相结合,构建高密度遗传图谱,重点开展主要产量主要构成要素——粒重的初级基因定位,确定影响粒重的主效QTL位点,为开发粒重CAPS分子标记及在分子标记辅助育种提供依据和指导,并为利用小麦粒重次级群体进行精细定位和基因挖掘奠定基础。[方法]利用90 K小麦SNP基因芯片、DArt芯片技术及传统的分子标记技术,以包含173个家系的RIL群体(F9:10重组自交系)为材料,构建高密度遗传图谱,并利用QTL network2.0进行了3年共4环境粒重QTL分析。[结果]构建了覆盖小麦21条染色体的高密度遗传图谱,该图谱共含有6 244个多态性标记,其中SNP标记6 001个、DAr T标记216个、SSR标记27个,覆盖染色体总长度4 875.29 c M,标记间平均距离0.78 c M。A、B、D染色体组分别有2 390、3 386和468个标记,分别占总标记数的38.3%、54.3%和7.5%;3个染色体组标记间平均距离分别为0.80、0.75和0.80 c M。用该分子遗传图谱对4个环境下粒重进行QTL分析,检测到位于1B、4B、5B、6A染色体上9个加性QTL,效应值大于10%的QTL位点有QGW4B-17、QGW4B-5、QGW4B-2、QGW6A-344、QGW6A-137;其中QGW4B-17在多个环境下检测到,其贡献率为16%—33.3%,可增加粒重效应值2.30-2.97g,该位点是稳定表达的主效QTL。9个QTL的加性效应均来自大粒母本山农01-35,单个QTL位点加性效应可增加千粒重1.09—2.97 g。[结论]构建的覆盖小麦21条染色体的分子遗传图谱共含有6 241个多态性标记,标记间平均距离为0.77 c M。利用该图谱检测到位于1B、4B、5B、6A染色体上9个控制粒重的加性QTL,其中QGW4B-17是稳定表达的主效QTL位点,贡献率为16.5%—33%,可增加粒重效应值2.30—2.97 g。