期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Estimates for eigenvalues of Laplacian operator with any order 被引量:7
1
作者 Fa-en WU~(1+) Lin-fen CAO~2 1 Department of Mathematics,Beijing Jiaotong University,Beijing 100044,China 2 Department of Mathematics,Henan Normal University,Xinxiang 453007,China 《Science China Mathematics》 SCIE 2007年第8期1078-1086,共9页
Let D be a bounded domain in an n-dimensional Euclidean space ? n . Assume that $$0 < \lambda _1 \leqslant \lambda _2 \leqslant \cdots \leqslant \lambda _k \leqslant \cdots $$ are the eigenvalues of the Dirichlet L... Let D be a bounded domain in an n-dimensional Euclidean space ? n . Assume that $$0 < \lambda _1 \leqslant \lambda _2 \leqslant \cdots \leqslant \lambda _k \leqslant \cdots $$ are the eigenvalues of the Dirichlet Laplacian operator with any order l: $$\left\{ \begin{gathered} ( - \vartriangle )^l u = \lambda u, in D \hfill \\ u = \frac{{\partial u}}{{\partial \vec n}} = \cdots = \frac{{\partial ^{l - 1} u}}{{\partial \vec n^{l - 1} }} = 0, on \partial D \hfill \\ \end{gathered} \right.$$ . Then we obtain an upper bound of the (k+1)-th eigenvalue λ k+1 in terms of the first k eigenvalues. $$\sum\limits_{i = 1}^k {(\lambda _{(k + 1)} - \lambda _i )} \leqslant \frac{1}{n}[4l(n + 2l - 2)]^{\tfrac{1}{2}} \left\{ {\sum\limits_{i = 1}^k {(\lambda _{(k + 1)} - \lambda _i )^{\tfrac{1}{2}} \lambda _i^{\tfrac{{l - 1}}{l}} \sum\limits_{i = 1}^k {(\lambda _{(k + 1)} - \lambda _i )^{\tfrac{1}{2}} \lambda _i^{\tfrac{1}{l}} } } } \right\}^{\tfrac{1}{2}} $$ . This ineguality is independent of the domain D. Furthermore, for any l ? 3 the above inequality is better than all the known results. Our rusults are the natural generalization of inequalities corresponding to the case l = 2 considered by Qing-Ming Cheng and Hong-Cang Yang. When l = 1, our inequalities imply a weaker form of Yang inequalities. We aslo reprove an implication claimed by Cheng and Yang. 展开更多
关键词 Dirichlet problem eigenvalue estimate Laplacian operator 35P15 58g25
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部