The traffic explosion and the rising of diverse requirements lead to many challenges for traditional mobile network architecture on flexibility, scalability, and deployability. To meet new requirements in the 5 G era,...The traffic explosion and the rising of diverse requirements lead to many challenges for traditional mobile network architecture on flexibility, scalability, and deployability. To meet new requirements in the 5 G era, service based architecture is introduced into mobile networks. The monolithic network elements(e.g., MME, PGW, etc.) are split into smaller network functions to provide customized services. However, the management and deployment of network functions in service based 5 G core network are still big challenges. In this paper, we propose a novel management architecture for 5 G service based core network based on NFV and SDN. Combined with SDN, NFV and edge computing, the proposed framework can provide distributed and on-demand deployment of network functions, service guaranteed network slicing, flexible orchestration of network functions and optimal workload allocation. Simulations are conducted to show that the proposed framework and algorithm are effective in terms of reducing network operating cost.展开更多
Recent developments in the aerospace industry have led to a dramatic reduction in the manufacturing and launch costs of low Earth orbit satellites.The new trend enables the paradigm shift of satelliteterrestrial integ...Recent developments in the aerospace industry have led to a dramatic reduction in the manufacturing and launch costs of low Earth orbit satellites.The new trend enables the paradigm shift of satelliteterrestrial integrated networks with global coverage.In particular,the integration of 5G communication systems and satellites has the potential to restructure nextgeneration mobile networks.By leveraging the network function virtualization and network slicing,the satellite 5G core networks will facilitate the coordination and management of network functions in satellite-terrestrial integrated networks.We are the first to deploy a 5G core network on a real-world satellite to investigate its feasibility.We conducted experiments to validate the satellite 5G core network functions.The validated procedures include registration and session setup procedures.The results show that the satellite 5G core network can function normally and generate correct signaling.展开更多
The Internet of Things(IoTs)has become an essential component of the 5th Generation(5G)network and beyond,accelerating the transition to digital society.The increasing signaling traffic generated by billions of IoT de...The Internet of Things(IoTs)has become an essential component of the 5th Generation(5G)network and beyond,accelerating the transition to digital society.The increasing signaling traffic generated by billions of IoT devices has placed significant strain on the 5G Core network(5GC)control plane.To address this issue,the 3rd Gener-ation Partnership Project(3GPP)first proposed a Service-Based Architecture(SBA),intending to create a flexible,scalable,and agile cloud-native 5GC.However,considering the coupling of protocol states and functions,there are still many challenges to fully utilize the benefits of the cloud computing and orchestrate the 5GC in a cloud-native manner.We propose a Message-Level StateLess Design(ML-SLD)to provide a cloud-native 5GC from an architectural standpoint in this paper.Firstly,we propose an innovative mechanism for servitization of the N2 interface to maintain the connection between Radio Access Network(RAN)and the 5GC,avoiding interruptions and dropouts of large-scale user data.Furthermore,we propose an On-demand Message Forwarding(OMF)al-gorithm to reduce the impact of cloud fluctuations on the performance of cloud-native 5GC.Finally,we create a prototype that is based on the OpenAirInterface(OAI)5G core network projects,with all Network Functions(NFs)packaged in dockers and deployed in a kubernetes-based cloud environment.Several experiments have been built with UERANSIM and Chaosblade simulation tools.The findings demonstrate the viability and efficiency of our proposed methods.展开更多
现有5G(5th GenerationMobile Communication Technology)核心网异常检测主要基于信令流量深度解析,但较少利用核心网网络功能交互关系的作用。针对上述问题,提出一种基于交互的5G核心网网络功能异常检测模型。首先,该模型以行为分析为...现有5G(5th GenerationMobile Communication Technology)核心网异常检测主要基于信令流量深度解析,但较少利用核心网网络功能交互关系的作用。针对上述问题,提出一种基于交互的5G核心网网络功能异常检测模型。首先,该模型以行为分析为驱动,基于信令流量和网络功能注册数据提取多维属性,通过行为画像来表征网络功能行为模式,并采用集成学习算法RFECV(Recursive Feature Elimination with Cross-Validation)进行属性特征选择,降低特征维度的同时筛选出与区分网络功能行为模式高度相关的属性特征。然后,模型基于网络功能交互关系对核心网进行图建模,建模后的图数据融合了网络功能属性信息和交互信息。最后,模型通过基于空间域的图卷积网络聚合邻域节点属性信息和结构信息来融合行为模式特征,新生成的节点表示用于分类,从而将核心网网络功能异常检测问题转化为图节点分类问题。通过在free5GC仿真平台上采集数据,并在搭建的异常检测系统中的实验表明,该模型的异常检测性能优于基于属性特征分析的传统机器学习模型、基于结构特征分析的图嵌入模型及部分5G核心网异常检测模型。10%数据集作为训练集时,所提模型的准确率比支持向量机模型提高6.6%,比Struc2vec模型提高13%,比深度神经网络模型提高8%。展开更多
为了满足不同业务对5G网络差异化的需求,5G网络采用了网络切片技术,将网络资源灵活分配,实现网络端到端或某一部分资源的切分,包括终端、接入网和核心网的切分。每个切片的能力按业务需求进行切分,在同一网络基础设施上,切分出多个具备...为了满足不同业务对5G网络差异化的需求,5G网络采用了网络切片技术,将网络资源灵活分配,实现网络端到端或某一部分资源的切分,包括终端、接入网和核心网的切分。每个切片的能力按业务需求进行切分,在同一网络基础设施上,切分出多个具备不同能力的虚拟子网。根据《3GPP TS 23.501-System architecture for the 5G System (5GS)Stage 2 (Release 18)》规范,定义了六大类(SST字段分类)切片,分别是e MBB(Enhanced Mobile Broadband,增强移动宽带)切片、URLLC(Ultra-reliable and Low Latency Communications,高可靠低时延通信)切片、MIoT(Massive IoT,大规模物联网)切片、V2X(Vehicle To Everything,车联网)切片、HMTC(High-Performance Machine-Type Communications,高性能机器类通信)切片、HDLLC(High Data rate and Low Latency Communications,高数据速率低时延通信)切片。对切片技术进行了介绍,同时,对特定场景的切片监测系统进行了研究,给出了一种切片监测系统的实现方案,该系统可帮助提高特定场景切片网络安全性和可靠性。展开更多
基金supported by China Ministry of Education-CMCC Research Fund Project No.MCM20160104National Science and Technology Major Project No.No.2018ZX03001016+1 种基金Beijing Municipal Science and technology Commission Research Fund Project No.Z171100005217001Fundamental Research Funds for Central Universities NO.2018RC06
文摘The traffic explosion and the rising of diverse requirements lead to many challenges for traditional mobile network architecture on flexibility, scalability, and deployability. To meet new requirements in the 5 G era, service based architecture is introduced into mobile networks. The monolithic network elements(e.g., MME, PGW, etc.) are split into smaller network functions to provide customized services. However, the management and deployment of network functions in service based 5 G core network are still big challenges. In this paper, we propose a novel management architecture for 5 G service based core network based on NFV and SDN. Combined with SDN, NFV and edge computing, the proposed framework can provide distributed and on-demand deployment of network functions, service guaranteed network slicing, flexible orchestration of network functions and optimal workload allocation. Simulations are conducted to show that the proposed framework and algorithm are effective in terms of reducing network operating cost.
基金supported by the National Key R&D Program of China(2020YFB1805500)National Natural Science Foundation of China(61922017,62032003 and 61921003)。
文摘Recent developments in the aerospace industry have led to a dramatic reduction in the manufacturing and launch costs of low Earth orbit satellites.The new trend enables the paradigm shift of satelliteterrestrial integrated networks with global coverage.In particular,the integration of 5G communication systems and satellites has the potential to restructure nextgeneration mobile networks.By leveraging the network function virtualization and network slicing,the satellite 5G core networks will facilitate the coordination and management of network functions in satellite-terrestrial integrated networks.We are the first to deploy a 5G core network on a real-world satellite to investigate its feasibility.We conducted experiments to validate the satellite 5G core network functions.The validated procedures include registration and session setup procedures.The results show that the satellite 5G core network can function normally and generate correct signaling.
基金funded by the National Key Research and Development Program of China under Grant 2019YFB1803301Beijing Natural Science Foundation(L202002).
文摘The Internet of Things(IoTs)has become an essential component of the 5th Generation(5G)network and beyond,accelerating the transition to digital society.The increasing signaling traffic generated by billions of IoT devices has placed significant strain on the 5G Core network(5GC)control plane.To address this issue,the 3rd Gener-ation Partnership Project(3GPP)first proposed a Service-Based Architecture(SBA),intending to create a flexible,scalable,and agile cloud-native 5GC.However,considering the coupling of protocol states and functions,there are still many challenges to fully utilize the benefits of the cloud computing and orchestrate the 5GC in a cloud-native manner.We propose a Message-Level StateLess Design(ML-SLD)to provide a cloud-native 5GC from an architectural standpoint in this paper.Firstly,we propose an innovative mechanism for servitization of the N2 interface to maintain the connection between Radio Access Network(RAN)and the 5GC,avoiding interruptions and dropouts of large-scale user data.Furthermore,we propose an On-demand Message Forwarding(OMF)al-gorithm to reduce the impact of cloud fluctuations on the performance of cloud-native 5GC.Finally,we create a prototype that is based on the OpenAirInterface(OAI)5G core network projects,with all Network Functions(NFs)packaged in dockers and deployed in a kubernetes-based cloud environment.Several experiments have been built with UERANSIM and Chaosblade simulation tools.The findings demonstrate the viability and efficiency of our proposed methods.
文摘现有5G(5th GenerationMobile Communication Technology)核心网异常检测主要基于信令流量深度解析,但较少利用核心网网络功能交互关系的作用。针对上述问题,提出一种基于交互的5G核心网网络功能异常检测模型。首先,该模型以行为分析为驱动,基于信令流量和网络功能注册数据提取多维属性,通过行为画像来表征网络功能行为模式,并采用集成学习算法RFECV(Recursive Feature Elimination with Cross-Validation)进行属性特征选择,降低特征维度的同时筛选出与区分网络功能行为模式高度相关的属性特征。然后,模型基于网络功能交互关系对核心网进行图建模,建模后的图数据融合了网络功能属性信息和交互信息。最后,模型通过基于空间域的图卷积网络聚合邻域节点属性信息和结构信息来融合行为模式特征,新生成的节点表示用于分类,从而将核心网网络功能异常检测问题转化为图节点分类问题。通过在free5GC仿真平台上采集数据,并在搭建的异常检测系统中的实验表明,该模型的异常检测性能优于基于属性特征分析的传统机器学习模型、基于结构特征分析的图嵌入模型及部分5G核心网异常检测模型。10%数据集作为训练集时,所提模型的准确率比支持向量机模型提高6.6%,比Struc2vec模型提高13%,比深度神经网络模型提高8%。
文摘为了满足不同业务对5G网络差异化的需求,5G网络采用了网络切片技术,将网络资源灵活分配,实现网络端到端或某一部分资源的切分,包括终端、接入网和核心网的切分。每个切片的能力按业务需求进行切分,在同一网络基础设施上,切分出多个具备不同能力的虚拟子网。根据《3GPP TS 23.501-System architecture for the 5G System (5GS)Stage 2 (Release 18)》规范,定义了六大类(SST字段分类)切片,分别是e MBB(Enhanced Mobile Broadband,增强移动宽带)切片、URLLC(Ultra-reliable and Low Latency Communications,高可靠低时延通信)切片、MIoT(Massive IoT,大规模物联网)切片、V2X(Vehicle To Everything,车联网)切片、HMTC(High-Performance Machine-Type Communications,高性能机器类通信)切片、HDLLC(High Data rate and Low Latency Communications,高数据速率低时延通信)切片。对切片技术进行了介绍,同时,对特定场景的切片监测系统进行了研究,给出了一种切片监测系统的实现方案,该系统可帮助提高特定场景切片网络安全性和可靠性。