With the increasing demand for data traffic and with the massive foreseen deployment of the Internet of Things (IoT), higher data rates and capacity are required in mobile networks. While Heterogeneous Networks (HetNe...With the increasing demand for data traffic and with the massive foreseen deployment of the Internet of Things (IoT), higher data rates and capacity are required in mobile networks. While Heterogeneous Networks (HetNets) are under study toward 5G technology, Wireless Fidelity (WiFi) Access Points (APs) are considered a potential layer within those multiple Radio Access Technologies (RATs). For this purpose, we have proposed in this paper a novel WiFi dimensioning method, to offload data traffic from Long Term Evolution (LTE) to WiFi, by transferring the LTE energy consuming heavy users, to the WiFi network. First, we have calculated the remaining available capacity of the WiFi network based on the estimated load of each WiFi physical channel using the overlapping characteristic of the channels. Then, we were able through this dimensioning method, to calculate the minimum needed number of WiFi APs that ensure the same or better throughput for the LTE transferred users. By this method, we have ensured additional capacity in the LTE network with minimum investment cost in the WiFi network. Finally, we have estimated the profit sharing between LTE and WiFi by considering data bundles subscription revenues and the infrastructure capital and operational costs. We have calculated for each network the profit share using a coalition game theory Shapley value that pinpoints the benefit of the cooperation using the proposed dimensioning method.展开更多
In this article we propose a miniaturized dual-band electronically steerable parasitic array radiator (ESPAR) antenna. The antenna can generate up to two steerable beams. The beam-steering range of the proposed antenn...In this article we propose a miniaturized dual-band electronically steerable parasitic array radiator (ESPAR) antenna. The antenna can generate up to two steerable beams. The beam-steering range of the proposed antenna is 360˚ in the azimuth plane. The antenna’s eual-band coverage includes the frequency ranges from 2.3 GHz to 2.53 GHz and from 2.9 GHz to 3.7 GHz. The antenna consists of six folded parasitic monopole elements surrounding an active conical element. The folded monopole element design offers three times lower antenna height than that of the conventional ESPAR antennas. The active element has conical shape and it is larger in length than the parasitic monopole elements, this enables the dual-band operation. Thus, the proposed design is not only smaller than the conventional ESPAR antennas but it also achieves dual-band operation. Despite its compact design, the antenna has a peak gain of 6.3 dBi, which is equivalent to the gain of conventional ESPAR antennas. These characteristics make the antenna a good candidate for next generation communication systems.展开更多
文摘With the increasing demand for data traffic and with the massive foreseen deployment of the Internet of Things (IoT), higher data rates and capacity are required in mobile networks. While Heterogeneous Networks (HetNets) are under study toward 5G technology, Wireless Fidelity (WiFi) Access Points (APs) are considered a potential layer within those multiple Radio Access Technologies (RATs). For this purpose, we have proposed in this paper a novel WiFi dimensioning method, to offload data traffic from Long Term Evolution (LTE) to WiFi, by transferring the LTE energy consuming heavy users, to the WiFi network. First, we have calculated the remaining available capacity of the WiFi network based on the estimated load of each WiFi physical channel using the overlapping characteristic of the channels. Then, we were able through this dimensioning method, to calculate the minimum needed number of WiFi APs that ensure the same or better throughput for the LTE transferred users. By this method, we have ensured additional capacity in the LTE network with minimum investment cost in the WiFi network. Finally, we have estimated the profit sharing between LTE and WiFi by considering data bundles subscription revenues and the infrastructure capital and operational costs. We have calculated for each network the profit share using a coalition game theory Shapley value that pinpoints the benefit of the cooperation using the proposed dimensioning method.
文摘In this article we propose a miniaturized dual-band electronically steerable parasitic array radiator (ESPAR) antenna. The antenna can generate up to two steerable beams. The beam-steering range of the proposed antenna is 360˚ in the azimuth plane. The antenna’s eual-band coverage includes the frequency ranges from 2.3 GHz to 2.53 GHz and from 2.9 GHz to 3.7 GHz. The antenna consists of six folded parasitic monopole elements surrounding an active conical element. The folded monopole element design offers three times lower antenna height than that of the conventional ESPAR antennas. The active element has conical shape and it is larger in length than the parasitic monopole elements, this enables the dual-band operation. Thus, the proposed design is not only smaller than the conventional ESPAR antennas but it also achieves dual-band operation. Despite its compact design, the antenna has a peak gain of 6.3 dBi, which is equivalent to the gain of conventional ESPAR antennas. These characteristics make the antenna a good candidate for next generation communication systems.