A 5GHz low power direct conversion receiver radio frequency front-end with balun LNA is presented. A hybrid common gate and common source structure balun LNA is adopted, and the capacitive cross-coupling technique is ...A 5GHz low power direct conversion receiver radio frequency front-end with balun LNA is presented. A hybrid common gate and common source structure balun LNA is adopted, and the capacitive cross-coupling technique is used to reduce the noise contribution of the common source transistor. To obtain low 1/f noise and high linearity, a current mode passive mixer is preferred and realized. A current mode switching scheme can switch between high and low gain modes, and meanwhile it can not only perform good linearity but save power consump- tion at low gain mode. The front-end chip is manufactured on a 0.13-#m CMOS process and occupies an active chip area of 1.2 mm2. It achieves 35 dB conversion gain across 4.9-5.1 GHz, a noise figure of 7.2 dB and an IIP3 of -16.8 dBm, while consuming 28.4 mA from a 1.2 V power supply at high gain mode. Its conversion gain is 13 dB with an IIP3 of 5.2 dBm and consumes 21.5 mA at low gain mode.展开更多
We demonstrate the transmission of 2.5-Gb/s WDM signals spaced at 5 GHz over 480 km of single-mode fiber. The results indicate that it should be possible to transmit more than one thousand 2.5-Gb/s channels spaced at ...We demonstrate the transmission of 2.5-Gb/s WDM signals spaced at 5 GHz over 480 km of single-mode fiber. The results indicate that it should be possible to transmit more than one thousand 2.5-Gb/s channels spaced at 5 GHz over long distance.展开更多
基金Project supported by the National High Technology Research and Development Program of China(No.2009AA011605)
文摘A 5GHz low power direct conversion receiver radio frequency front-end with balun LNA is presented. A hybrid common gate and common source structure balun LNA is adopted, and the capacitive cross-coupling technique is used to reduce the noise contribution of the common source transistor. To obtain low 1/f noise and high linearity, a current mode passive mixer is preferred and realized. A current mode switching scheme can switch between high and low gain modes, and meanwhile it can not only perform good linearity but save power consump- tion at low gain mode. The front-end chip is manufactured on a 0.13-#m CMOS process and occupies an active chip area of 1.2 mm2. It achieves 35 dB conversion gain across 4.9-5.1 GHz, a noise figure of 7.2 dB and an IIP3 of -16.8 dBm, while consuming 28.4 mA from a 1.2 V power supply at high gain mode. Its conversion gain is 13 dB with an IIP3 of 5.2 dBm and consumes 21.5 mA at low gain mode.
文摘We demonstrate the transmission of 2.5-Gb/s WDM signals spaced at 5 GHz over 480 km of single-mode fiber. The results indicate that it should be possible to transmit more than one thousand 2.5-Gb/s channels spaced at 5 GHz over long distance.