Satellite communications, pivotal for global connectivity, are increasingly converging with cutting-edge mobile networks, notably 5G, B5G, and 6G. This amalgamation heralds the promise of universal, high-velocity comm...Satellite communications, pivotal for global connectivity, are increasingly converging with cutting-edge mobile networks, notably 5G, B5G, and 6G. This amalgamation heralds the promise of universal, high-velocity communication, yet it is not without its challenges. Paramount concerns encompass spectrum allocation, the harmonization of network architectures, and inherent latency issues in satellite transmissions. Potential mitigations, such as dynamic spectrum sharing and the deployment of edge computing, are explored as viable solutions. Looking ahead, the advent of quantum communications within satellite frameworks and the integration of AI spotlight promising research trajectories. These advancements aim to foster a seamless and synergistic coexistence between satellite communications and next-gen mobile networks.展开更多
The current resource allocation in 5G vehicular networks for mobile cloud communication faces several challenges,such as low user utilization,unbalanced resource allocation,and extended adaptive allocation time.We pro...The current resource allocation in 5G vehicular networks for mobile cloud communication faces several challenges,such as low user utilization,unbalanced resource allocation,and extended adaptive allocation time.We propose an adaptive allocation algorithm for mobile cloud communication resources in 5G vehicular networks to address these issues.This study analyzes the components of the 5G vehicular network architecture to determine the performance of different components.It is ascertained that the communication modes in 5G vehicular networks for mobile cloud communication include in-band and out-of-band modes.Furthermore,this study analyzes the single-hop and multi-hop modes in mobile cloud communication and calculates the resource transmission rate and bandwidth in different communication modes.The study also determines the scenario of one-way and two-way vehicle lane cloud communication network connectivity,calculates the probability of vehicle network connectivity under different mobile cloud communication radii,and determines the amount of cloud communication resources required by vehicles in different lane scenarios.Based on the communication status of users in 5G vehicular networks,this study calculates the bandwidth and transmission rate of the allocated channels using Shannon’s formula.It determines the adaptive allocation of cloud communication resources,introduces an objective function to obtain the optimal solution after allocation,and completes the adaptive allocation process.The experimental results demonstrate that,with the application of the proposed method,the maximum utilization of user communication resources reaches approximately 99%.The balance coefficient curve approaches 1,and the allocation time remains under 2 s.This indicates that the proposed method has higher adaptive allocation efficiency.展开更多
The demands on conventional communication networks are increasing rapidly because of the exponential expansion of connected multimedia content.In light of the data-centric aspect of contemporary communication,the info...The demands on conventional communication networks are increasing rapidly because of the exponential expansion of connected multimedia content.In light of the data-centric aspect of contemporary communication,the information-centric network(ICN)paradigm offers hope for a solution by emphasizing content retrieval by name instead of location.If 5G networks are to meet the expected data demand surge from expanded connectivity and Internet of Things(IoT)devices,then effective caching solutions will be required tomaximize network throughput andminimize the use of resources.Hence,an ICN-based Cooperative Caching(ICN-CoC)technique has been used to select a cache by considering cache position,content attractiveness,and rate prediction.The findings show that utilizing our suggested approach improves caching regarding the Cache Hit Ratio(CHR)of 84.3%,Average Hop Minimization Ratio(AHMR)of 89.5%,and Mean Access Latency(MAL)of 0.4 s.Within a framework,it suggests improved caching strategies to handle the difficulty of effectively controlling data consumption in 5G networks.These improvements aim to make the network run more smoothly by enhancing content delivery,decreasing latency,and relieving congestion.By improving 5G communication systems’capacity tomanage the demands faced by modern data-centric applications,the research ultimately aids in advancement.展开更多
Mobile communication standards have been developed into a new era of B5G and 6G.In recent years,low earth orbit(LEO)satellites and space Internet have become hot topics.The integrated satellite and terrestrial systems...Mobile communication standards have been developed into a new era of B5G and 6G.In recent years,low earth orbit(LEO)satellites and space Internet have become hot topics.The integrated satellite and terrestrial systems have been widely discussed by industries and academics,and even are expected to be applied in those huge constellations in construction.This paper points out the trends of two stages towards system integration of the terrestrial mobile communication and the satellite communications:to be compatible with 5G,and to be integrated within 6G.Based on analysis of the challenges of both stages,key technologies are thereafter analyzed in detail,covering both air interface currently discussed in 3GPP for B5G and also novel network architecture and related transmission technologies toward future 6G.展开更多
Millimeter-wave(mm Wave) communications will be used in fifth-generation(5G) mobile communication systems, but they experience severe path loss and have high sensitivity to physical objects, leading to smaller cell ra...Millimeter-wave(mm Wave) communications will be used in fifth-generation(5G) mobile communication systems, but they experience severe path loss and have high sensitivity to physical objects, leading to smaller cell radii and complicated network architectures. A coverage extension scheme using large-scale antenna arrays(LSAAs) has been suggested and theoretically proven to be cost-efficient in combination with ultradense small cell networks. To analyze and optimize the LSAA-based network deployments, a comprehensive survey of recent advances in statistical mmWave channel modeling is first presented in terms of channel parameter estimation, large-scale path loss models, and small-scale cluster models. Next, the measurement and modeling results at two 5G candidate mmWave bands(e.g., 28 GHz and 39 GHz) are reviewed and compared in several outdoor scenarios of interest, where the propagation characteristics make crucial contributions to wireless network designs. Finally, the coverage behaviors of systems employing a large number of antenna arrays are discussed, as well as some implications on future mmWave cellular network designs.展开更多
A novel phased array antenna consisting of 256 elements is presented and experimentally verified for 5G millimeter-wave wireless communications.The antenna integrated with a wave control circuit can perform real-time ...A novel phased array antenna consisting of 256 elements is presented and experimentally verified for 5G millimeter-wave wireless communications.The antenna integrated with a wave control circuit can perform real-time beam scanning by reconfiguring the phase of an antenna unit.The unit,designed at 28 GHz using a simple patch structure with one PIN diode,can be electronically controlled to generate 1 bit phase quantization.A prototype of the antenna is fabricated and measured to demonstrate the feasibility of this approach.The measurement results indicate that the antenna achieves high gain and fast beam-steering,with the scan beams within±60°range and the maximum gain up to 21.7 dBi.Furthermore,it is also tested for wireless video transmission.In ZTE Shanghai,the antenna was used for the 5G New Radio(NR)test.The error vector magnitude(EVM)is less than 3%and the adjacent channel leakage ratio(ACLR)less than−35 dBc,which can meet 5G system requirements.Compared with the conventional phased array antenna,the proposed phased array has the advantages of low power consumption,low cost and conformal geometry.Due to these characteristics,the antenna is promising for wide applications in 5G millimeter-wave communication systems.展开更多
Fifth Generation(5G)communications are regarded as the cornerstone to household consumer experience improvements and smart manufacturing revolution from the standpoint of industries’objectives.It is anticipated that ...Fifth Generation(5G)communications are regarded as the cornerstone to household consumer experience improvements and smart manufacturing revolution from the standpoint of industries’objectives.It is anticipated that Envisaged 5G(E5G)mobile technology would be operational in certain developed countries by 2023.The Internet of Things(IoTs)will transform how humans live when combined with smart and integrated sensing devices,such as in-home sensing devices.Recent research is being carried out all over the world to produce a new technique that can be crucial in the success of the anticipated 5G mobile technology.High output,reduced latency,highly reliable,greater scalability,high performance,capacity,bandwidth efficiency,virtual open-air transmission,and efficient energy mobile wireless communications are all being investigated currently.In this work,a comprehensive path for addressing the difficulties and developments associated with 5G mobile technology is provided.The debate and description of a complete analysis of current situations,certain characteristics and prospective scenarios,important technologies,problems and advances,and spectrum allocation of envisioned 5G mobile technologies are provided.Furthermore,this paper analyzes the most notable elements of 5G mobile technology,such as Cognitive Radio(CR),flexibility,accessibility,and cloud-based service offers,which will assure 5G mobile technology’s dominance as the main protocol for international communication.Eventually,this paper provides a method for integrating CR with current wireless communication systems,the necessity for further evolution of the E5G network,and the need for comprehensive consideration of architecture evolution and function enhancement to enhance the E5G mobile technologies.展开更多
Future components to enhance the basic,native security of 5G networks are either complex mechanisms whose impact in the requiring 5G communications are not considered,or lightweight solutions adapted to ultrareliable ...Future components to enhance the basic,native security of 5G networks are either complex mechanisms whose impact in the requiring 5G communications are not considered,or lightweight solutions adapted to ultrareliable low-latency communications(URLLC)but whose security properties remain under discussion.Although different 5G network slices may have different requirements,in general,both visions seem to fall short at provisioning secure URLLC in the future.In this work we address this challenge,by introducing cost-security functions as a method to evaluate the performance and adequacy of most developed and employed non-native enhanced security mechanisms in 5G networks.We categorize those new security components into different groups according to their purpose and deployment scope.We propose to analyze them in the context of existing 5G architectures using two different approaches.First,using model checking techniques,we will evaluate the probability of an attacker to be successful against each security solution.Second,using analytical models,we will analyze the impact of these security mechanisms in terms of delay,throughput consumption,and reliability.Finally,we will combine both approaches using stochastic cost-security functions and the PRISM model checker to create a global picture.Our results are first evidence of how a 5G network that covers and strengthened all security areas through enhanced,dedicated non-native mechanisms could only guarantee secure URLLC with a probability of∼55%.展开更多
Under various deployment circumstances,fifth-generation(5G)telecommunications delivers improved network compound management with fast communication channels.Due to the introduction of the Internet of Things(IoT)in dat...Under various deployment circumstances,fifth-generation(5G)telecommunications delivers improved network compound management with fast communication channels.Due to the introduction of the Internet of Things(IoT)in data management,the majority of the ultra-dense network models in 5G networks frequently have decreased spectral efficiency,weak handover management,and vulnerabilities.The majority of traditional handover authentication models are seriously threatened,making them vulnerable to a variety of security attacks.The authentication of networked devices is the most important issue.Therefore,a model that incorporates the handover mechanism and authentication model must be created.This article uses a fuzzy logic model to create a handover and key management system that focuses on cloud handover management and authentication performance.In order to decrease delays in 5G networks,the fuzzy logic is built with multiple criteria that aim to reduce the number of executed handovers and target cell selection.The simulation is run to evaluate the model’s performance in terms of latency,spatial complexity,and other metrics related to authentication attack validation.展开更多
For a 5G wireless communication system,a convolutional deep neural network(CNN)is employed to synthesize a robust channel state estimator(CSE).The proposed CSE extracts channel information from transmit-and-receive pa...For a 5G wireless communication system,a convolutional deep neural network(CNN)is employed to synthesize a robust channel state estimator(CSE).The proposed CSE extracts channel information from transmit-and-receive pairs through offline training to estimate the channel state information.Also,it utilizes pilots to offer more helpful information about the communication channel.The proposedCNN-CSE performance is compared with previously published results for Bidirectional/long short-term memory(BiLSTM/LSTM)NNs-based CSEs.The CNN-CSE achieves outstanding performance using sufficient pilots only and loses its functionality at limited pilots compared with BiLSTM and LSTM-based estimators.Using three different loss function-based classification layers and the Adam optimization algorithm,a comparative study was conducted to assess the performance of the presented DNNs-based CSEs.The BiLSTM-CSE outperforms LSTM,CNN,conventional least squares(LS),and minimum mean square error(MMSE)CSEs.In addition,the computational and learning time complexities for DNN-CSEs are provided.These estimators are promising for 5G and future communication systems because they can analyze large amounts of data,discover statistical dependencies,learn correlations between features,and generalize the gotten knowledge.展开更多
The fifth generation(5G) network is expected to support significantly large amount of mobile data traffic and huge number of wireless connections,to achieve better spectrum- and energy-efficiency,as well as quality of...The fifth generation(5G) network is expected to support significantly large amount of mobile data traffic and huge number of wireless connections,to achieve better spectrum- and energy-efficiency,as well as quality of service(QoS) in terms of delay,reliability and security.Furthermore,the 5G network shall also incorporate high mobility requirements as an integral part,providing satisfactory service to users travelling at a speed up to 500 km/h.This paper provides a survey of potential high mobility wireless communication(HMWC) techniques for 5G network.After discussing the typical requirements and challenges of HMWC,key techniques to cope with the challenges are reviewed,including transmission techniques under the fast timevarying channels,network architecture with mobility support,and mobility management.Finally,future research directions on 5G high mobility communications are given.展开更多
Backscatter communications will play an important role in connecting everything for beyond 5G(B5G)and 6G systems.One open challenge for backscatter communications is that the signals suffer a round-trip path loss so t...Backscatter communications will play an important role in connecting everything for beyond 5G(B5G)and 6G systems.One open challenge for backscatter communications is that the signals suffer a round-trip path loss so that the communication distance is short.In this paper,we first calculate the communication distance upper bounds for both uplink and downlink by measuring the tag sensitivity and reflection coefficient.It is found that the activation voltage of the envelope detection diode of the downlink tag is the main factor limiting the back-scatter communication distance.Based on this analysis,we then propose to implement a low-noise amplifier(LNA)module before the envelope detection at the tag to enhance the incident signal strength.Our experimental results on the hardware platform show that our method can increase the downlink communication range by nearly 20 m.展开更多
Nowadays,high mobility scenarios have become increasingly common.The widespread adoption of High-speed Rail(HSR)in China exemplifies this trend,while more promising use cases,such as vehicle-to-everything,continue to ...Nowadays,high mobility scenarios have become increasingly common.The widespread adoption of High-speed Rail(HSR)in China exemplifies this trend,while more promising use cases,such as vehicle-to-everything,continue to emerge.However,the Internet access provided in high mobility environments stllstruggles to achieve seamless connectivity.The next generation of wireless cellular technology 5 G further poses more requirements on the endto-end evolution to fully utilize its ultra-high band-width,while existing network diagnostic tools focus on above-IP layers or below-IP layers only.We then propose HiMoDiag,which enables flexible online analysis of the network performance in a cross-layer manner,i.e.,from the top(application layer)to the bottom(physical layer).We believe HiMoDiag could greatly simplify the process of pinpointing the deficiencies of the Internet access delivery on HSR,lead to more timely optimization and ultimately help to improve the network performance.展开更多
Mobile Edge Computing(MEC) is an emerging technology in 5G era which enables the provision of the cloud and IT services within the close proximity of mobile subscribers.It allows the availability of the cloud servers ...Mobile Edge Computing(MEC) is an emerging technology in 5G era which enables the provision of the cloud and IT services within the close proximity of mobile subscribers.It allows the availability of the cloud servers inside or adjacent to the base station.The endto-end latency perceived by the mobile user is therefore reduced with the MEC platform.The context-aware services are able to be served by the application developers by leveraging the real time radio access network information from MEC.The MEC additionally enables the compute intensive applications execution in the resource constraint devices with the collaborative computing involving the cloud servers.This paper presents the architectural description of the MEC platform as well as the key functionalities enabling the above features.The relevant state-of-the-art research efforts are then surveyed.The paper finally discusses and identifies the open research challenges of MEC.展开更多
The popularity of wearable devices and smartphones has fueled the development of Mobile Augmented Reality(MAR),which provides immersive experiences over the real world using techniques,such as computer vision and deep...The popularity of wearable devices and smartphones has fueled the development of Mobile Augmented Reality(MAR),which provides immersive experiences over the real world using techniques,such as computer vision and deep learning.However,the hardware-specific MAR is costly and heavy,and the App-based MAR requires an additional download and installation and it also lacks cross-platform ability.These limitations hamper the pervasive promotion of MAR.This paper argues that mobile Web AR(MWAR)holds the potential to become a practical and pervasive solution that can effectively scale to millions of end-users because MWAR can be developed as a lightweight,cross-platform,and low-cost solution for end-to-end delivery of MAR.The main challenges for making MWAR a reality lie in the low efficiency for dense computing in Web browsers,a large delay for real-time interactions over mobile networks,and the lack of standardization.The good news is that the newly emerging 5G and Beyond 5G(B5G)cellular networks can mitigate these issues to some extent via techniques such as network slicing,device-to-device communication,and mobile edge computing.In this paper,we first give an overview of the challenges and opportunities of MWAR in the 5G era.Then we describe our design and development of a generic service-oriented framework(called MWAR5)to provide a scalable,flexible,and easy to deploy MWAR solution.We evaluate the performance of our MWAR5 system in an actually deployed 5G trial network under the collaborative configurations,which shows encouraging results.Moreover,we also share the experiences and insights from our development and deployment,including some exciting future directions of MWAR over 5G and B5G networks.展开更多
Through enabling the IT and cloud computation capacities at Radio Access Network(RAN),Mobile Edge Computing(MEC) makes it possible to deploy and provide services locally.Therefore,MEC becomes the potential technology ...Through enabling the IT and cloud computation capacities at Radio Access Network(RAN),Mobile Edge Computing(MEC) makes it possible to deploy and provide services locally.Therefore,MEC becomes the potential technology to satisfy the requirements of 5G network to a certain extent,due to its functions of services localization,local breakout,caching,computation offloading,network context information exposure,etc.Especially,MEC can decrease the end-to-end latency dramatically through service localization and caching,which is key requirement of 5G low latency scenario.However,the performance of MEC still needs to be evaluated and verified for future deployment.Thus,the concept of MEC is introduced into5 G architecture and analyzed for different 5G scenarios in this paper.Secondly,the evaluation of MEC performance is conducted and analyzed in detail,especially for network end-to-end latency.In addition,some challenges of the MEC are also discussed for future deployment.展开更多
This paper focuses on the design and implementation of an active multibeam antenna system for massive MIMO applications in 5G wireless communications.The highly integrated active multibeam antenna system is designed a...This paper focuses on the design and implementation of an active multibeam antenna system for massive MIMO applications in 5G wireless communications.The highly integrated active multibeam antenna system is designed and implemented at 5.8 GHz with 64 RF Channels and 256 antenna elements.The 64-channel highly integrated active multibeam antenna system provides a verification platform for digital beamforming algorithm and massive MIMO channel estimation for next generation wireless communications.展开更多
The fifth generation (5G) wireless communication is currently a hot research topic and wireless communication systems on high speed railways (HSR) are important applications of 5G technologies. Existing stud- ies ...The fifth generation (5G) wireless communication is currently a hot research topic and wireless communication systems on high speed railways (HSR) are important applications of 5G technologies. Existing stud- ies about 5G wireless systems on high speed railways (HSR) often utilize ideal channel parameters and are usually based on simple scenarios. In this paper, we evaluate the down- link throughput of 5G HSR communication systems on three typical scenarios including urban, cutting and viaduct with three different channel estimators. The channel parameters of each scenario are generated with tapped delay line (TDL) models through ray-tracing sim- ulations, which can be considered as a good match to practical situations. The channel estimators including least square (LS), linear minimum mean square error (LMMSE), and our proposed historical information based ba- sis expansion model (HiBEM). We analyze the performance of the HiBEM estimator in terms of mean square error (MSE) and evaluate the system throughputs with different channel estimates over each scenario. Simulation results are then provided to corroborate our proposed studies. It is shown that our HiBEM estimator outperforms other estimators and that the sys-tem throughput can reach the highest point in the viaduct scenario.展开更多
Recently,the fifth generation(5G)of mobile networks has been deployed and various ranges of mobile services have been provided.The 5G mobile network supports improved mobile broadband,ultra-low latency and densely dep...Recently,the fifth generation(5G)of mobile networks has been deployed and various ranges of mobile services have been provided.The 5G mobile network supports improved mobile broadband,ultra-low latency and densely deployed massive devices.It allows multiple radio access technologies and interworks them for services.5G mobile systems employ traffic steering techniques to efficiently use multiple radio access technologies.However,conventional traffic steering techniques do not consider dynamic network conditions efficiently.In this paper,we propose a network aided traffic steering technique in 5G mobile network architecture.5G mobile systems monitor network conditions and learn with network data.Through a machine learning algorithm such as a feed-forward neural network,it recognizes dynamic network conditions and then performs traffic steering.The proposed scheme controls traffic for multiple radio access according to the ratio of measured throughput.Thus,it can be expected to improve traffic steering efficiency.The performance of the proposed traffic steering scheme is evaluated using extensive computer simulations.展开更多
文摘Satellite communications, pivotal for global connectivity, are increasingly converging with cutting-edge mobile networks, notably 5G, B5G, and 6G. This amalgamation heralds the promise of universal, high-velocity communication, yet it is not without its challenges. Paramount concerns encompass spectrum allocation, the harmonization of network architectures, and inherent latency issues in satellite transmissions. Potential mitigations, such as dynamic spectrum sharing and the deployment of edge computing, are explored as viable solutions. Looking ahead, the advent of quantum communications within satellite frameworks and the integration of AI spotlight promising research trajectories. These advancements aim to foster a seamless and synergistic coexistence between satellite communications and next-gen mobile networks.
基金This research was supported by Science and Technology Research Project of Education Department of Jiangxi Province,China(Nos.GJJ2206701,GJJ2206717).
文摘The current resource allocation in 5G vehicular networks for mobile cloud communication faces several challenges,such as low user utilization,unbalanced resource allocation,and extended adaptive allocation time.We propose an adaptive allocation algorithm for mobile cloud communication resources in 5G vehicular networks to address these issues.This study analyzes the components of the 5G vehicular network architecture to determine the performance of different components.It is ascertained that the communication modes in 5G vehicular networks for mobile cloud communication include in-band and out-of-band modes.Furthermore,this study analyzes the single-hop and multi-hop modes in mobile cloud communication and calculates the resource transmission rate and bandwidth in different communication modes.The study also determines the scenario of one-way and two-way vehicle lane cloud communication network connectivity,calculates the probability of vehicle network connectivity under different mobile cloud communication radii,and determines the amount of cloud communication resources required by vehicles in different lane scenarios.Based on the communication status of users in 5G vehicular networks,this study calculates the bandwidth and transmission rate of the allocated channels using Shannon’s formula.It determines the adaptive allocation of cloud communication resources,introduces an objective function to obtain the optimal solution after allocation,and completes the adaptive allocation process.The experimental results demonstrate that,with the application of the proposed method,the maximum utilization of user communication resources reaches approximately 99%.The balance coefficient curve approaches 1,and the allocation time remains under 2 s.This indicates that the proposed method has higher adaptive allocation efficiency.
基金New Brunswick Innovation Foundation(NBIF)for the financial support of the global project.
文摘The demands on conventional communication networks are increasing rapidly because of the exponential expansion of connected multimedia content.In light of the data-centric aspect of contemporary communication,the information-centric network(ICN)paradigm offers hope for a solution by emphasizing content retrieval by name instead of location.If 5G networks are to meet the expected data demand surge from expanded connectivity and Internet of Things(IoT)devices,then effective caching solutions will be required tomaximize network throughput andminimize the use of resources.Hence,an ICN-based Cooperative Caching(ICN-CoC)technique has been used to select a cache by considering cache position,content attractiveness,and rate prediction.The findings show that utilizing our suggested approach improves caching regarding the Cache Hit Ratio(CHR)of 84.3%,Average Hop Minimization Ratio(AHMR)of 89.5%,and Mean Access Latency(MAL)of 0.4 s.Within a framework,it suggests improved caching strategies to handle the difficulty of effectively controlling data consumption in 5G networks.These improvements aim to make the network run more smoothly by enhancing content delivery,decreasing latency,and relieving congestion.By improving 5G communication systems’capacity tomanage the demands faced by modern data-centric applications,the research ultimately aids in advancement.
基金This work was supported in part by the National Science Fund for Distinguished Young Scholars in China under grant 61425012the National Science Foundation Project in China under grant 61931005 and 61731017.
文摘Mobile communication standards have been developed into a new era of B5G and 6G.In recent years,low earth orbit(LEO)satellites and space Internet have become hot topics.The integrated satellite and terrestrial systems have been widely discussed by industries and academics,and even are expected to be applied in those huge constellations in construction.This paper points out the trends of two stages towards system integration of the terrestrial mobile communication and the satellite communications:to be compatible with 5G,and to be integrated within 6G.Based on analysis of the challenges of both stages,key technologies are thereafter analyzed in detail,covering both air interface currently discussed in 3GPP for B5G and also novel network architecture and related transmission technologies toward future 6G.
基金supported in part by the National Natural Science Foundation of China under Grant No.61671145the Key R&D Program of Jiangsu Province of China under Grant BE2018121
文摘Millimeter-wave(mm Wave) communications will be used in fifth-generation(5G) mobile communication systems, but they experience severe path loss and have high sensitivity to physical objects, leading to smaller cell radii and complicated network architectures. A coverage extension scheme using large-scale antenna arrays(LSAAs) has been suggested and theoretically proven to be cost-efficient in combination with ultradense small cell networks. To analyze and optimize the LSAA-based network deployments, a comprehensive survey of recent advances in statistical mmWave channel modeling is first presented in terms of channel parameter estimation, large-scale path loss models, and small-scale cluster models. Next, the measurement and modeling results at two 5G candidate mmWave bands(e.g., 28 GHz and 39 GHz) are reviewed and compared in several outdoor scenarios of interest, where the propagation characteristics make crucial contributions to wireless network designs. Finally, the coverage behaviors of systems employing a large number of antenna arrays are discussed, as well as some implications on future mmWave cellular network designs.
文摘A novel phased array antenna consisting of 256 elements is presented and experimentally verified for 5G millimeter-wave wireless communications.The antenna integrated with a wave control circuit can perform real-time beam scanning by reconfiguring the phase of an antenna unit.The unit,designed at 28 GHz using a simple patch structure with one PIN diode,can be electronically controlled to generate 1 bit phase quantization.A prototype of the antenna is fabricated and measured to demonstrate the feasibility of this approach.The measurement results indicate that the antenna achieves high gain and fast beam-steering,with the scan beams within±60°range and the maximum gain up to 21.7 dBi.Furthermore,it is also tested for wireless video transmission.In ZTE Shanghai,the antenna was used for the 5G New Radio(NR)test.The error vector magnitude(EVM)is less than 3%and the adjacent channel leakage ratio(ACLR)less than−35 dBc,which can meet 5G system requirements.Compared with the conventional phased array antenna,the proposed phased array has the advantages of low power consumption,low cost and conformal geometry.Due to these characteristics,the antenna is promising for wide applications in 5G millimeter-wave communication systems.
文摘Fifth Generation(5G)communications are regarded as the cornerstone to household consumer experience improvements and smart manufacturing revolution from the standpoint of industries’objectives.It is anticipated that Envisaged 5G(E5G)mobile technology would be operational in certain developed countries by 2023.The Internet of Things(IoTs)will transform how humans live when combined with smart and integrated sensing devices,such as in-home sensing devices.Recent research is being carried out all over the world to produce a new technique that can be crucial in the success of the anticipated 5G mobile technology.High output,reduced latency,highly reliable,greater scalability,high performance,capacity,bandwidth efficiency,virtual open-air transmission,and efficient energy mobile wireless communications are all being investigated currently.In this work,a comprehensive path for addressing the difficulties and developments associated with 5G mobile technology is provided.The debate and description of a complete analysis of current situations,certain characteristics and prospective scenarios,important technologies,problems and advances,and spectrum allocation of envisioned 5G mobile technologies are provided.Furthermore,this paper analyzes the most notable elements of 5G mobile technology,such as Cognitive Radio(CR),flexibility,accessibility,and cloud-based service offers,which will assure 5G mobile technology’s dominance as the main protocol for international communication.Eventually,this paper provides a method for integrating CR with current wireless communication systems,the necessity for further evolution of the E5G network,and the need for comprehensive consideration of architecture evolution and function enhancement to enhance the E5G mobile technologies.
基金The publication is produced within the framework of Ramon Alcarria y Borja Bordel’s research projects on the occasion of their stay at Argonne Labs(Jose Castillejo’s 2021 grant)supported by the Ministry of Science,Innovation andUniversities through the COGNOS project.
文摘Future components to enhance the basic,native security of 5G networks are either complex mechanisms whose impact in the requiring 5G communications are not considered,or lightweight solutions adapted to ultrareliable low-latency communications(URLLC)but whose security properties remain under discussion.Although different 5G network slices may have different requirements,in general,both visions seem to fall short at provisioning secure URLLC in the future.In this work we address this challenge,by introducing cost-security functions as a method to evaluate the performance and adequacy of most developed and employed non-native enhanced security mechanisms in 5G networks.We categorize those new security components into different groups according to their purpose and deployment scope.We propose to analyze them in the context of existing 5G architectures using two different approaches.First,using model checking techniques,we will evaluate the probability of an attacker to be successful against each security solution.Second,using analytical models,we will analyze the impact of these security mechanisms in terms of delay,throughput consumption,and reliability.Finally,we will combine both approaches using stochastic cost-security functions and the PRISM model checker to create a global picture.Our results are first evidence of how a 5G network that covers and strengthened all security areas through enhanced,dedicated non-native mechanisms could only guarantee secure URLLC with a probability of∼55%.
文摘Under various deployment circumstances,fifth-generation(5G)telecommunications delivers improved network compound management with fast communication channels.Due to the introduction of the Internet of Things(IoT)in data management,the majority of the ultra-dense network models in 5G networks frequently have decreased spectral efficiency,weak handover management,and vulnerabilities.The majority of traditional handover authentication models are seriously threatened,making them vulnerable to a variety of security attacks.The authentication of networked devices is the most important issue.Therefore,a model that incorporates the handover mechanism and authentication model must be created.This article uses a fuzzy logic model to create a handover and key management system that focuses on cloud handover management and authentication performance.In order to decrease delays in 5G networks,the fuzzy logic is built with multiple criteria that aim to reduce the number of executed handovers and target cell selection.The simulation is run to evaluate the model’s performance in terms of latency,spatial complexity,and other metrics related to authentication attack validation.
基金funded by Taif University Researchers Supporting Project No.(TURSP-2020/214),Taif University,Taif,Saudi Arabia。
文摘For a 5G wireless communication system,a convolutional deep neural network(CNN)is employed to synthesize a robust channel state estimator(CSE).The proposed CSE extracts channel information from transmit-and-receive pairs through offline training to estimate the channel state information.Also,it utilizes pilots to offer more helpful information about the communication channel.The proposedCNN-CSE performance is compared with previously published results for Bidirectional/long short-term memory(BiLSTM/LSTM)NNs-based CSEs.The CNN-CSE achieves outstanding performance using sufficient pilots only and loses its functionality at limited pilots compared with BiLSTM and LSTM-based estimators.Using three different loss function-based classification layers and the Adam optimization algorithm,a comparative study was conducted to assess the performance of the presented DNNs-based CSEs.The BiLSTM-CSE outperforms LSTM,CNN,conventional least squares(LS),and minimum mean square error(MMSE)CSEs.In addition,the computational and learning time complexities for DNN-CSEs are provided.These estimators are promising for 5G and future communication systems because they can analyze large amounts of data,discover statistical dependencies,learn correlations between features,and generalize the gotten knowledge.
基金supported by the National Basic Research Program of China (973 Program No.2012CB316100)
文摘The fifth generation(5G) network is expected to support significantly large amount of mobile data traffic and huge number of wireless connections,to achieve better spectrum- and energy-efficiency,as well as quality of service(QoS) in terms of delay,reliability and security.Furthermore,the 5G network shall also incorporate high mobility requirements as an integral part,providing satisfactory service to users travelling at a speed up to 500 km/h.This paper provides a survey of potential high mobility wireless communication(HMWC) techniques for 5G network.After discussing the typical requirements and challenges of HMWC,key techniques to cope with the challenges are reviewed,including transmission techniques under the fast timevarying channels,network architecture with mobility support,and mobility management.Finally,future research directions on 5G high mobility communications are given.
基金supported in part by National Natural Science Foundation of China under Grant Nos.61971029 and U22B2004in part by Beijing Municipal Natural Science Foundation under Grant No.L222002.
文摘Backscatter communications will play an important role in connecting everything for beyond 5G(B5G)and 6G systems.One open challenge for backscatter communications is that the signals suffer a round-trip path loss so that the communication distance is short.In this paper,we first calculate the communication distance upper bounds for both uplink and downlink by measuring the tag sensitivity and reflection coefficient.It is found that the activation voltage of the envelope detection diode of the downlink tag is the main factor limiting the back-scatter communication distance.Based on this analysis,we then propose to implement a low-noise amplifier(LNA)module before the envelope detection at the tag to enhance the incident signal strength.Our experimental results on the hardware platform show that our method can increase the downlink communication range by nearly 20 m.
基金supported by National Key Research and Development Plan,China(Grant No.2020YFB1710900)National Natural Science Foundation of China(Grant No.62022005 and 62172008).
文摘Nowadays,high mobility scenarios have become increasingly common.The widespread adoption of High-speed Rail(HSR)in China exemplifies this trend,while more promising use cases,such as vehicle-to-everything,continue to emerge.However,the Internet access provided in high mobility environments stllstruggles to achieve seamless connectivity.The next generation of wireless cellular technology 5 G further poses more requirements on the endto-end evolution to fully utilize its ultra-high band-width,while existing network diagnostic tools focus on above-IP layers or below-IP layers only.We then propose HiMoDiag,which enables flexible online analysis of the network performance in a cross-layer manner,i.e.,from the top(application layer)to the bottom(physical layer).We believe HiMoDiag could greatly simplify the process of pinpointing the deficiencies of the Internet access delivery on HSR,lead to more timely optimization and ultimately help to improve the network performance.
文摘Mobile Edge Computing(MEC) is an emerging technology in 5G era which enables the provision of the cloud and IT services within the close proximity of mobile subscribers.It allows the availability of the cloud servers inside or adjacent to the base station.The endto-end latency perceived by the mobile user is therefore reduced with the MEC platform.The context-aware services are able to be served by the application developers by leveraging the real time radio access network information from MEC.The MEC additionally enables the compute intensive applications execution in the resource constraint devices with the collaborative computing involving the cloud servers.This paper presents the architectural description of the MEC platform as well as the key functionalities enabling the above features.The relevant state-of-the-art research efforts are then surveyed.The paper finally discusses and identifies the open research challenges of MEC.
基金supported in part by the National Key R&D Program of China under Grant 2018YFE0205503in part by the National Natural Science Foundation of China (NSFC) under Grant 61671081+4 种基金in part by the Funds for International Cooperation and Exchange of NSFC under Grant 61720106007in part by the 111 Project under Grant B18008in part by the Beijing Natural Science Foundation under Grant 4172042in part by the Fundamental Research Funds for the Central Universities under Grant 2018XKJC01in part by the BUPT Excellent Ph.D. Students Foundation under Grant CX2019213
文摘The popularity of wearable devices and smartphones has fueled the development of Mobile Augmented Reality(MAR),which provides immersive experiences over the real world using techniques,such as computer vision and deep learning.However,the hardware-specific MAR is costly and heavy,and the App-based MAR requires an additional download and installation and it also lacks cross-platform ability.These limitations hamper the pervasive promotion of MAR.This paper argues that mobile Web AR(MWAR)holds the potential to become a practical and pervasive solution that can effectively scale to millions of end-users because MWAR can be developed as a lightweight,cross-platform,and low-cost solution for end-to-end delivery of MAR.The main challenges for making MWAR a reality lie in the low efficiency for dense computing in Web browsers,a large delay for real-time interactions over mobile networks,and the lack of standardization.The good news is that the newly emerging 5G and Beyond 5G(B5G)cellular networks can mitigate these issues to some extent via techniques such as network slicing,device-to-device communication,and mobile edge computing.In this paper,we first give an overview of the challenges and opportunities of MWAR in the 5G era.Then we describe our design and development of a generic service-oriented framework(called MWAR5)to provide a scalable,flexible,and easy to deploy MWAR solution.We evaluate the performance of our MWAR5 system in an actually deployed 5G trial network under the collaborative configurations,which shows encouraging results.Moreover,we also share the experiences and insights from our development and deployment,including some exciting future directions of MWAR over 5G and B5G networks.
基金supported by the National High Technology Research and Development Program(863) of China(No.2015AA01A701)
文摘Through enabling the IT and cloud computation capacities at Radio Access Network(RAN),Mobile Edge Computing(MEC) makes it possible to deploy and provide services locally.Therefore,MEC becomes the potential technology to satisfy the requirements of 5G network to a certain extent,due to its functions of services localization,local breakout,caching,computation offloading,network context information exposure,etc.Especially,MEC can decrease the end-to-end latency dramatically through service localization and caching,which is key requirement of 5G low latency scenario.However,the performance of MEC still needs to be evaluated and verified for future deployment.Thus,the concept of MEC is introduced into5 G architecture and analyzed for different 5G scenarios in this paper.Secondly,the evaluation of MEC performance is conducted and analyzed in detail,especially for network end-to-end latency.In addition,some challenges of the MEC are also discussed for future deployment.
文摘This paper focuses on the design and implementation of an active multibeam antenna system for massive MIMO applications in 5G wireless communications.The highly integrated active multibeam antenna system is designed and implemented at 5.8 GHz with 64 RF Channels and 256 antenna elements.The 64-channel highly integrated active multibeam antenna system provides a verification platform for digital beamforming algorithm and massive MIMO channel estimation for next generation wireless communications.
基金supported by the National Natural Science Foundation of China(Grant Nos.61522109,61671253,61571037and 91738201)the Fundamental Research Funds for the Central Universities(No.2016JBZ006)+1 种基金the Natural Science Foundation of Jiangsu Province(Grant Nos.BK20150040and BK20171446)the Key Project of Natural Science Research of Higher Education Institutions of Jiangsu Province(No.15KJA510003)
文摘The fifth generation (5G) wireless communication is currently a hot research topic and wireless communication systems on high speed railways (HSR) are important applications of 5G technologies. Existing stud- ies about 5G wireless systems on high speed railways (HSR) often utilize ideal channel parameters and are usually based on simple scenarios. In this paper, we evaluate the down- link throughput of 5G HSR communication systems on three typical scenarios including urban, cutting and viaduct with three different channel estimators. The channel parameters of each scenario are generated with tapped delay line (TDL) models through ray-tracing sim- ulations, which can be considered as a good match to practical situations. The channel estimators including least square (LS), linear minimum mean square error (LMMSE), and our proposed historical information based ba- sis expansion model (HiBEM). We analyze the performance of the HiBEM estimator in terms of mean square error (MSE) and evaluate the system throughputs with different channel estimates over each scenario. Simulation results are then provided to corroborate our proposed studies. It is shown that our HiBEM estimator outperforms other estimators and that the sys-tem throughput can reach the highest point in the viaduct scenario.
基金This research was supported by the MSIT(Ministry of Science and ICT),Korea,under the ITRC(Information Technology Research Center)support program(IITP-2020-2015-0-00403)supervised by the IITP(Institute for Information&communications Technology Planning&Evaluation)this work was supported by the Soonchunhyang University Research Fund.
文摘Recently,the fifth generation(5G)of mobile networks has been deployed and various ranges of mobile services have been provided.The 5G mobile network supports improved mobile broadband,ultra-low latency and densely deployed massive devices.It allows multiple radio access technologies and interworks them for services.5G mobile systems employ traffic steering techniques to efficiently use multiple radio access technologies.However,conventional traffic steering techniques do not consider dynamic network conditions efficiently.In this paper,we propose a network aided traffic steering technique in 5G mobile network architecture.5G mobile systems monitor network conditions and learn with network data.Through a machine learning algorithm such as a feed-forward neural network,it recognizes dynamic network conditions and then performs traffic steering.The proposed scheme controls traffic for multiple radio access according to the ratio of measured throughput.Thus,it can be expected to improve traffic steering efficiency.The performance of the proposed traffic steering scheme is evaluated using extensive computer simulations.