In this paper, we use two new effective tools and ingenious methods to prove the 3X + 1 conjecture. By using the recursive method, we firstly prove that any positive integer can be turned into an element of fourth col...In this paper, we use two new effective tools and ingenious methods to prove the 3X + 1 conjecture. By using the recursive method, we firstly prove that any positive integer can be turned into an element of fourth column of the infinite-row-six-column-matrix after a finite times operation, thus we convert “the 3X + 1 conjecture” into an equivalent conjecture, which is: Any positive integer n must become 1 after finite operations under formation of <span style="white-space:nowrap;">σ(<em>n</em>)</span> , where <img src="Edit_dad9267d-3c54-455b-b30e-63819c207e54.png" width="300" height="117" alt="" /> Then, with the help of the infinite-row-four-column-matrix, we continue to use the recursive method to prove this conjecture strictly.展开更多
文摘In this paper, we use two new effective tools and ingenious methods to prove the 3X + 1 conjecture. By using the recursive method, we firstly prove that any positive integer can be turned into an element of fourth column of the infinite-row-six-column-matrix after a finite times operation, thus we convert “the 3X + 1 conjecture” into an equivalent conjecture, which is: Any positive integer n must become 1 after finite operations under formation of <span style="white-space:nowrap;">σ(<em>n</em>)</span> , where <img src="Edit_dad9267d-3c54-455b-b30e-63819c207e54.png" width="300" height="117" alt="" /> Then, with the help of the infinite-row-four-column-matrix, we continue to use the recursive method to prove this conjecture strictly.