Biotransformation of 6:2 fluorotelomer sulfonate(6:2 FTS)by two species of white-rot fungi,Pleurotus ostreatus(P.ostreatus)and Trametopsis cervina(T.cervina),was investigated in a sulfurrich medium designed to stimula...Biotransformation of 6:2 fluorotelomer sulfonate(6:2 FTS)by two species of white-rot fungi,Pleurotus ostreatus(P.ostreatus)and Trametopsis cervina(T.cervina),was investigated in a sulfurrich medium designed to stimulate production of lignin-degrading enzymes.Degradation of 6:2 FTS was observed by T.cervina over the study period of 30 d,but not by P.ostreatus.Biotransformation rates were comparable to those found in other studies investigating mixed culture degradation in nonsulfur limiting media,with approximately 50 mol%of applied 6:2 FTS removed after 30 d.Stable transformation products were short-chain perfluorocarboxylic acids(PFCAs),including PFHxA(2.27 mol%),PFPeA(0.24 mol%),and PFBA(0.28 mol%).The main intermediate products include 5:2 sFTOH(16.3 mol%)and 5:3 FTCA(2.99 mol%),while 6:2 FTCA,6:2 FTuCA,and 5:2 ketone were also identified at low levels.Approximately 60 mol%of detected products were assigned to the major pathway to 5:2 ketone,and 40 mol%were assigned to the minor pathway to 5:3 FTCA.The overall molar balance was found to decrease to 75 mol%by Day 30,however,was closed to near 95 mol%with a theoretical estimation for the volatile intermediates in the headspace,5:2 ketone and 5:2 sFTOH.The different capabilities of the two white-rot fungal species for 6:2 FTS biotransformation in sulfur-rich media suggest that the enzyme processes of T.cervina to de-sulfonate 6:2 FTS may be unrelated to sulfur metabolism.展开更多
5-aminosalicylic acid(5-ASA) is drug of choice for the treatment of ulcerative colitis(UC). In this study, the efficacy of topical versus oral 5-ASA for the treatment of UC was examined as well as the action mecha...5-aminosalicylic acid(5-ASA) is drug of choice for the treatment of ulcerative colitis(UC). In this study, the efficacy of topical versus oral 5-ASA for the treatment of UC was examined as well as the action mechanism of this medication. A flexible tube was inserted into the rat cecum to establish a topical administration model of 2,4,6-trinitrobenzene sulfonic acid(TNBS)-induced UC. A total of 60 rats were divided into sham operation group(receiving an enema of 0.9% saline solution instead of the TNBS solution via the tube), model group, topical 5-ASA group, oral Etiasa group(a release agent of mesalazine used as positive control) and oral 5-ASA group(n=12 each). Different treatments were administered 1 day after UC induction. The normal saline(2 mL) was instilled twice a day through the tube in the sham operation group and model group. 5-ASA was given via the tube in the topical 5-ASA group(7.5 g/L, twice per day, 100 mg/kg), and rats in the oral Etiasa group and oral 5-ASA group intragastrically received Etiasa(7.5 g/L, twice per day, 100 mg/kg) and 5-ASA(7.5 g/L, twice per day, 100 mg/kg), respectively. The body weight was recorded every day. After 7 days of treatment, blood samples were drawn from the heart to harvest the sera. Colonic tissues were separated and prepared for pathological and related molecular biological examinations. The concentrations of 5-ASA were detected at different time points in the colonic tissues, feces and sera in different groups by using the high pressure liquid chromatography(HPLC). The results showed that the symptoms of acute UC, including bloody diarrhea and weight loss, were significantly improved in topical 5-ASA-treated rats. The colonic mucosal damage, both macroscopical and histological, was significantly relieved and the myeloperoxidase activity was markedly decreased in rats topically treated with 5-ASA compared with those treated with oral 5-ASA or Etiasa. The mRNA and protein expression of IL-1β, IL-6, and TNF-α was down-regulated in the colonic tissue of rats topically treated with 5-ASA, significantly lower than those from rats treated with oral 5-ASA or Etiasa. The concentrations of 5-ASA in the colonic tissue were significantly higher in the topical 5-ASA group than in the oral 5-ASA and oral Etiasa groups. It was concluded that the topical administration of 5-ASA can effectively increase the concentration of 5-ASA in the colonic tissue, decrease the expression of proinflammatory cytokines, alleviate the colonic pathological damage and improve the symptoms of TNBS-induced acute UC in rats.展开更多
基金support by the Center for Air and Aquatic Resources Engineering and Sciences(CAARES)at Clarkson University and thank the employees at the Center of Forest Mycology Research(CFMR)in Madison,WI,for providing all cultures used in this research.
文摘Biotransformation of 6:2 fluorotelomer sulfonate(6:2 FTS)by two species of white-rot fungi,Pleurotus ostreatus(P.ostreatus)and Trametopsis cervina(T.cervina),was investigated in a sulfurrich medium designed to stimulate production of lignin-degrading enzymes.Degradation of 6:2 FTS was observed by T.cervina over the study period of 30 d,but not by P.ostreatus.Biotransformation rates were comparable to those found in other studies investigating mixed culture degradation in nonsulfur limiting media,with approximately 50 mol%of applied 6:2 FTS removed after 30 d.Stable transformation products were short-chain perfluorocarboxylic acids(PFCAs),including PFHxA(2.27 mol%),PFPeA(0.24 mol%),and PFBA(0.28 mol%).The main intermediate products include 5:2 sFTOH(16.3 mol%)and 5:3 FTCA(2.99 mol%),while 6:2 FTCA,6:2 FTuCA,and 5:2 ketone were also identified at low levels.Approximately 60 mol%of detected products were assigned to the major pathway to 5:2 ketone,and 40 mol%were assigned to the minor pathway to 5:3 FTCA.The overall molar balance was found to decrease to 75 mol%by Day 30,however,was closed to near 95 mol%with a theoretical estimation for the volatile intermediates in the headspace,5:2 ketone and 5:2 sFTOH.The different capabilities of the two white-rot fungal species for 6:2 FTS biotransformation in sulfur-rich media suggest that the enzyme processes of T.cervina to de-sulfonate 6:2 FTS may be unrelated to sulfur metabolism.
基金supported by grants from the National Natural Science Foundation of China(No.81072431)the Innova-tion Foundation of Huazhong University of Science and Tech-nology(No.2010MS027)
文摘5-aminosalicylic acid(5-ASA) is drug of choice for the treatment of ulcerative colitis(UC). In this study, the efficacy of topical versus oral 5-ASA for the treatment of UC was examined as well as the action mechanism of this medication. A flexible tube was inserted into the rat cecum to establish a topical administration model of 2,4,6-trinitrobenzene sulfonic acid(TNBS)-induced UC. A total of 60 rats were divided into sham operation group(receiving an enema of 0.9% saline solution instead of the TNBS solution via the tube), model group, topical 5-ASA group, oral Etiasa group(a release agent of mesalazine used as positive control) and oral 5-ASA group(n=12 each). Different treatments were administered 1 day after UC induction. The normal saline(2 mL) was instilled twice a day through the tube in the sham operation group and model group. 5-ASA was given via the tube in the topical 5-ASA group(7.5 g/L, twice per day, 100 mg/kg), and rats in the oral Etiasa group and oral 5-ASA group intragastrically received Etiasa(7.5 g/L, twice per day, 100 mg/kg) and 5-ASA(7.5 g/L, twice per day, 100 mg/kg), respectively. The body weight was recorded every day. After 7 days of treatment, blood samples were drawn from the heart to harvest the sera. Colonic tissues were separated and prepared for pathological and related molecular biological examinations. The concentrations of 5-ASA were detected at different time points in the colonic tissues, feces and sera in different groups by using the high pressure liquid chromatography(HPLC). The results showed that the symptoms of acute UC, including bloody diarrhea and weight loss, were significantly improved in topical 5-ASA-treated rats. The colonic mucosal damage, both macroscopical and histological, was significantly relieved and the myeloperoxidase activity was markedly decreased in rats topically treated with 5-ASA compared with those treated with oral 5-ASA or Etiasa. The mRNA and protein expression of IL-1β, IL-6, and TNF-α was down-regulated in the colonic tissue of rats topically treated with 5-ASA, significantly lower than those from rats treated with oral 5-ASA or Etiasa. The concentrations of 5-ASA in the colonic tissue were significantly higher in the topical 5-ASA group than in the oral 5-ASA and oral Etiasa groups. It was concluded that the topical administration of 5-ASA can effectively increase the concentration of 5-ASA in the colonic tissue, decrease the expression of proinflammatory cytokines, alleviate the colonic pathological damage and improve the symptoms of TNBS-induced acute UC in rats.