期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
New insights on(V_(10)O_(28))^(6-)-based electrode materials for energy storage:a brief review 被引量:5
1
作者 Tao Zhou Ling-Ling Xie +9 位作者 Yu Niu Hao-Ran Xiao Yu-Jie Li Qing Han Xue-Jing Qiu Xin-Li Yang Xian-Yong Wu Li-Min Zhu Huan Pang Xiao-Yu Cao 《Rare Metals》 SCIE EI CAS CSCD 2023年第5期1431-1445,共15页
Progress in humanity has intensified the demand for efficient and renewable energy storage,which warrants the development of advanced rechargeable batteries such as lithium-ion batteries(LIBs),sodium-ion batteries(SIB... Progress in humanity has intensified the demand for efficient and renewable energy storage,which warrants the development of advanced rechargeable batteries such as lithium-ion batteries(LIBs),sodium-ion batteries(SIBs),zinc-ion batteries(ZIBs),and lithium-sulfur batteries(Li-S batteries).Nevertheless,these batteries still suffer from certain limitations,such as the insufficient capacity and inferior stability in their electrode materials.Therefore,developing a feasible electrode material for Li/Na/Zn ion storage represents a critical challenge.Recently,polyoxovanadates(POVs)materials,particularly decavanadate anion(V_(10)O_(28))^(6-)clusters,have attracted considerate attention as promising battery electrodes,due to their rich multi-electron redox process,high structural stability,simple preparation process,and abundant ligand environment.In this review,we provide an overview of the research progress of(V_(10)O_(28))^(6-)-based materials in various metal-ion battery systems,including LIBs,SIBs,ZIBs,and Li-S batteries.We also discuss the underlying challenges associated with this type of materials,and we provide alternative strategies to overcome these issues.This review aims to facilitate the research and development of the nextgeneration(V_(10)O_(28))^(6-)-based battery materials. 展开更多
关键词 (V_(10)O_(28))^(6-) Electrode materials BATTERIES Energy storage Progress and perspective
原文传递
The Dosimetric Effects of Different Beam Energy on Physical Dose Distributions in IMRT Based on Analysis of Physical Indices
2
作者 Ismail Eldesoky Ehab M. Attalla Wael M. Elshemey 《Journal of Cancer Therapy》 2013年第11期33-43,共11页
This work aimed at evaluating the effect of 6- and 10-MV photon energies on intensity-modulated radiation therapy (IMRT) treatment plan outcome in different selected diagnostic cases. For such purpose, 19 patients, wi... This work aimed at evaluating the effect of 6- and 10-MV photon energies on intensity-modulated radiation therapy (IMRT) treatment plan outcome in different selected diagnostic cases. For such purpose, 19 patients, with different types of non CNS solid tumers, were selected. Clinical step-and-shoot IMRT treatment plans were designed for delivery on a Siemens Oncor accelerator with 82 leafs;multi-leaf collimators (MLCs). To ensure that the similarity or difference among the plans is due to energy alone, the same optimization constraints were applied for both energy plans. All the parameters like beam angles, number of beams, were kept constant to achieve the same clinical objectives. The Comparative evaluation was based on dose-volumetric analysis of both energy IMRT plans. Both qualitative and quantitative methods were used. Several physical indices for Planning Target Volume (PTV), the relevant Organs at Risk (OARs) as mean dose (Dmean), maximum dose (Dmax), 95% dose (D95), integral dose, total number of segments, and the number of MU were applied. Homogeneity index and conformation number were two other evaluation parameters that were considered in this study. Collectively, the use of 6 MV photons was dosimetrically comparable with 10 MV photons in terms of target coverage, homogeneity, conformity, and OAR savings. While 10-MV plans showed a significant reduction in the number of MUs that varied between 4.2% and 16.6% (P-value = 0.0001) for the different cases compared to 6-MV. The percentage volumes of each patient receiving 2 Gy and 5 Gy were compared for the two energies. The general trend was that 6-MV plans had the highest percentage volume, (P-value = 0.0001, P-value = 0.006) respectively. 10-MV beams actually decreased the integral dose (from average 183.27 ± 152.38 Gy-Kg to 178.08 ± 147.71 Gy-Kg, P-value = 0.004) compared with 6-MV. In general, comparison of the above parameters showed statistically significant differences between 6-MV and 10-MV groups. Based on the present results, the 10-MV is the optimal energy for IMRT, regardless of the concerns about a potential risk of radiation-induced malignancies. It is recommended that the choice to treat at 10 MV be taken as a risk vs. benefit as the clinical significance remains to be determined on case by case basis. 展开更多
关键词 6- and 10-mv photon energies INTENSITY-MODULATED Radiation Therapy (IMRT) Dose-Volumetric ANALYSIS
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部