Three-degree of freedom(3-DOF) translational parallel manipulators(TPMs) have been widely studied both in industry and academia in the past decades. However, most architectures of 3-DOF TPMs are created mainly on ...Three-degree of freedom(3-DOF) translational parallel manipulators(TPMs) have been widely studied both in industry and academia in the past decades. However, most architectures of 3-DOF TPMs are created mainly on designers' intuition, empirical knowledge, or associative reasoning and the topology synthesis researches of 3-DOF TPMs are still limited. In order to find out the atlas of designs for 3-DOF TPMs, a topology search is presented for enumeration of 3-DOF TPMs whose limbs can be modeled as 5-DOF serial chains. The proposed topology search of 3-DOF TPMs is aimed to overcome the sensitivities of the design solution of a 3-DOF TPM for a LARM leg mechanism in a biped robot. The topology search, which is based on the concept of generation and specialization in graph theory, is reported as a step-by-step procedure with desired specifications, principle and rules of generalization, design requirements and constraints, and algorithm of number synthesis. In order to obtain new feasible designs for a chosen example and to limit the search domain under general considerations, one topological generalized kinematic chain is chosen to be specialized. An atlas of new feasible designs is obtained and analyzed for a specific solution as leg mechanisms. The proposed methodology provides a topology search for 3-DOF TPMs for leg mechanisms, but it can be also expanded for other applications and tasks.展开更多
The unique design for a novel 6-SPS parallel 3-dimensional platformmanipulator with an orthogonal configuration is investigated. The layout feature of the parallelmanipulator is described. Its force/motion transmissio...The unique design for a novel 6-SPS parallel 3-dimensional platformmanipulator with an orthogonal configuration is investigated. The layout feature of the parallelmanipulator is described. Its force/motion transmission capability, evaluation criteria arepresented. At the orthogonal configuration, the criteria and the relationships between the criteriaand the link lengths are analyzed, which is important since it can provide designer a piece ofvaluable information about how to choose the linear actuators. From the analysis of the results itis shown that the force/motion transmission capabilities of the parallel manipulator arecharacterized by isotropy at the orthogonal configuration. The manipulator is particularly suitablefor certain applications in 6-DOF micromanipulators and 6-axis force/moment transducers.展开更多
The trajectory tracking control for a 6-DOF robot manipulator with multiple inputs and outputs,non-linearity and strong coupling is studied.Firstly,a dynamical model for the 6-DOF robot manipulator is designed.From th...The trajectory tracking control for a 6-DOF robot manipulator with multiple inputs and outputs,non-linearity and strong coupling is studied.Firstly,a dynamical model for the 6-DOF robot manipulator is designed.From the view point of practical engineering,considering the model uncertainties and external disturbances,the robot manipulator is divided into 6 independent joint subsystems,and a linear active disturbance rejection controller(LADRC)is developed to track trajectory for each subsystem respectively.LADRC has few parameters that are easy to be adjusted in engineering.Linear expansion state observer(LESO)as the uncertainty observer is able to estimate the general uncertainties effectively.Eventually,the validity and robustness of the proposed method adopted in 6-DOF robot manipulator are demonstrated via numerical simulations and 6-DOF robot manipulator experiments,which is of practical value in engineering application.展开更多
In order to solve the problems of too large mass,too complex structure and poor flexibility of the 6 DOF manipulator,the topological optimization theory based on variable density method is applied to the 6-DOF manipul...In order to solve the problems of too large mass,too complex structure and poor flexibility of the 6 DOF manipulator,the topological optimization theory based on variable density method is applied to the 6-DOF manipulator,the topology optimization of the main structural components of the manipulator is carried out with the help of the finite element software ANSYS,and the optimized structure is simplified according to the density distribution of the units and the requirements of manufacturability.the results are compared and analysed by static mechanics.It shows that the whole mass of the 6-DOF manipulator is reduced by 47.23%without changing the original mechanical properties after topological optimization,and the optimized model can meet the requirements of manufacturability,the optimization effect is signifcant,which can be used as a reference for the structure optimization of the 6-DOF manipulator.展开更多
Some approaches to measure parallel 6-degree of freedom platform's posturestatically and to calibrate the platform's actual structural parameters by measuring a series of theplatform's varying postures are...Some approaches to measure parallel 6-degree of freedom platform's posturestatically and to calibrate the platform's actual structural parameters by measuring a series of theplatform's varying postures are studied. In the case where high posture accuracy is requiredrelatively, to obtain the platform's actual structural parameters is very important. Threedimensions measurement with 2 theodolites are used to obtain the platform's postures statically andNewton iterative method is adopted to calibrate structural parameters. Some measures taken in themeasurement and the calibration are discussed in detail. And the experiment results of theplatform's posture control before and after the calibration are given. The results show that theplatform's posture control accuracy after the calibration is improved notably.展开更多
基金supported by the Chinese Scholarship Council(CSC)for his Ph D study and research at LARM in the University of Cassino and South Latium,Italy,during 2013-2015
文摘Three-degree of freedom(3-DOF) translational parallel manipulators(TPMs) have been widely studied both in industry and academia in the past decades. However, most architectures of 3-DOF TPMs are created mainly on designers' intuition, empirical knowledge, or associative reasoning and the topology synthesis researches of 3-DOF TPMs are still limited. In order to find out the atlas of designs for 3-DOF TPMs, a topology search is presented for enumeration of 3-DOF TPMs whose limbs can be modeled as 5-DOF serial chains. The proposed topology search of 3-DOF TPMs is aimed to overcome the sensitivities of the design solution of a 3-DOF TPM for a LARM leg mechanism in a biped robot. The topology search, which is based on the concept of generation and specialization in graph theory, is reported as a step-by-step procedure with desired specifications, principle and rules of generalization, design requirements and constraints, and algorithm of number synthesis. In order to obtain new feasible designs for a chosen example and to limit the search domain under general considerations, one topological generalized kinematic chain is chosen to be specialized. An atlas of new feasible designs is obtained and analyzed for a specific solution as leg mechanisms. The proposed methodology provides a topology search for 3-DOF TPMs for leg mechanisms, but it can be also expanded for other applications and tasks.
基金This project is supported by National 863 Plan of China (No. 512-9804- 02) and 863 Opening Robot Laboratory Foundation of Shenyang Institute Automation of Chinese Academy of Sciences.
文摘The unique design for a novel 6-SPS parallel 3-dimensional platformmanipulator with an orthogonal configuration is investigated. The layout feature of the parallelmanipulator is described. Its force/motion transmission capability, evaluation criteria arepresented. At the orthogonal configuration, the criteria and the relationships between the criteriaand the link lengths are analyzed, which is important since it can provide designer a piece ofvaluable information about how to choose the linear actuators. From the analysis of the results itis shown that the force/motion transmission capabilities of the parallel manipulator arecharacterized by isotropy at the orthogonal configuration. The manipulator is particularly suitablefor certain applications in 6-DOF micromanipulators and 6-axis force/moment transducers.
基金Supported by the National Natural Science Foundation of China(No.11672290)
文摘The trajectory tracking control for a 6-DOF robot manipulator with multiple inputs and outputs,non-linearity and strong coupling is studied.Firstly,a dynamical model for the 6-DOF robot manipulator is designed.From the view point of practical engineering,considering the model uncertainties and external disturbances,the robot manipulator is divided into 6 independent joint subsystems,and a linear active disturbance rejection controller(LADRC)is developed to track trajectory for each subsystem respectively.LADRC has few parameters that are easy to be adjusted in engineering.Linear expansion state observer(LESO)as the uncertainty observer is able to estimate the general uncertainties effectively.Eventually,the validity and robustness of the proposed method adopted in 6-DOF robot manipulator are demonstrated via numerical simulations and 6-DOF robot manipulator experiments,which is of practical value in engineering application.
基金supported in part by China intelligent robot project of firm-universities cooperative R&D under Grant No.2021JQR021the Anhui Provincial Teaching Demonstration Course Project under Grant No.2020SJJXSFK0330+9 种基金the demonstration experiment training center project of Anhui Polytechnic University under Grant No.2020sysx02the Overseas Visiting and Research Project for Outstanding Young Backbone Talents in Universities of Anhui Province under Grant No.gxgwfx2019041the Innovation Project for Returned Overseas Students in Anhui Province under Grant No.2020LCX013Key Research and Development Projects of Anhui Province under Grant No.202004b11020006Scientific Research Foundation of Anhui Polytechnic University under Grant No.2020YQQ010Anhui Polytechnic University Research Initiation Fund for Introducing Talents under Grant No.2019YQQ004Anhui Polytechnic University Research Project under Grant No.Xjky019201905Industrial Collaborative Innovation Fund of Anhui Polytechnic University and Jiujiang District under Grant No.2021cyxtb9Open Project of Anhui Provincial Engineering Laboratory on Information Fusion and Control of Intelligent Robot under Grant No.IFCIR2020001Open project of Key Laboratory of industrial equipment quality big data Ministry of industry and information technology under Grant No.2021-IEQBD-05.
文摘In order to solve the problems of too large mass,too complex structure and poor flexibility of the 6 DOF manipulator,the topological optimization theory based on variable density method is applied to the 6-DOF manipulator,the topology optimization of the main structural components of the manipulator is carried out with the help of the finite element software ANSYS,and the optimized structure is simplified according to the density distribution of the units and the requirements of manufacturability.the results are compared and analysed by static mechanics.It shows that the whole mass of the 6-DOF manipulator is reduced by 47.23%without changing the original mechanical properties after topological optimization,and the optimized model can meet the requirements of manufacturability,the optimization effect is signifcant,which can be used as a reference for the structure optimization of the 6-DOF manipulator.
基金This project is supported by National Defense Science and Technology Multi-vocation Foundation in Advance Research of China(No. 97J465JW0408).
文摘Some approaches to measure parallel 6-degree of freedom platform's posturestatically and to calibrate the platform's actual structural parameters by measuring a series of theplatform's varying postures are studied. In the case where high posture accuracy is requiredrelatively, to obtain the platform's actual structural parameters is very important. Threedimensions measurement with 2 theodolites are used to obtain the platform's postures statically andNewton iterative method is adopted to calibrate structural parameters. Some measures taken in themeasurement and the calibration are discussed in detail. And the experiment results of theplatform's posture control before and after the calibration are given. The results show that theplatform's posture control accuracy after the calibration is improved notably.