This study investigates the breakdown voltage characteristics in sulfur hexafluoride(SF6)circuit breakers,employing a novel approach that integrates both experimental investigations and finite element simulations.Util...This study investigates the breakdown voltage characteristics in sulfur hexafluoride(SF6)circuit breakers,employing a novel approach that integrates both experimental investigations and finite element simulations.Utilizing a sphere-sphere electrode configuration,we meticulously measured the relationship between breakdown voltage and electrode gap distances ranging from 1 cm to 4.5 cm.Subsequent simulations,conducted using COMSOL Multiphysics,mirrored the experimental setup to validate the model’s accuracy through a comparison of the breakdown voltage-electrode gap distance curves.The simulation results not only aligned closely with the experimental data but also allowed the extraction of detailed electric field strength,electric potential contours,and electric current flow curves at the breakdown voltage for gap distances extending from 1 to 4.5 cm.Extending the analysis,the study explored the electric field and potential distribution at a constant voltage of 72.5 kV for gap distances between 1 to 10 cm,identifying the maximum electric field strength.A comprehensive comparison of five different electrode configurations(sphere-sphere,sphere-rod,sphere-plane,rod-plane,rod-rod)at 72.5 kV and a gap distance of 1.84 cm underscored the significant influence of electrode geometry on the breakdown process.Moreover,the research contrasts the breakdown voltage in SF6 with that in air,emphasizing SF6’s superior insulating properties.This investigation not only elucidates the intricate dynamics of electrical breakdown in SF6 circuit breakers but also contributes valuable insights into the optimal electrode configurations and the potential for alternative insulating gases,steering future advancements in high-voltage circuit breaker technology.展开更多
The atmospheric carbon dioxide(CO_(2))concentration has been increasing rapidly since the Industrial Revolution,which has led to unequivocal global warming and crucial environmental change.It is extremely important to...The atmospheric carbon dioxide(CO_(2))concentration has been increasing rapidly since the Industrial Revolution,which has led to unequivocal global warming and crucial environmental change.It is extremely important to investigate the interactions among atmospheric CO_(2),the physical climate system,and the carbon cycle of the underlying surface for a better understanding of the Earth system.Earth system models are widely used to investigate these interactions via coupled carbon-climate simulations.The Chinese Academy of Sciences Earth System Model version 2(CAS-ESM2.0)has successfully fixed a two-way coupling of atmospheric CO_(2)with the climate and carbon cycle on land and in the ocean.Using CAS-ESM2.0,we conducted a coupled carbon-climate simulation by following the CMIP6 proposal of a historical emissions-driven experiment.This paper examines the modeled CO_(2)by comparison with observed CO_(2)at the sites of Mauna Loa and Barrow,and the Greenhouse Gases Observing Satellite(GOSAT)CO_(2)product.The results showed that CAS-ESM2.0 agrees very well with observations in reproducing the increasing trend of annual CO_(2)during the period 1850-2014,and in capturing the seasonal cycle of CO_(2)at the two baseline sites,as well as over northern high latitudes.These agreements illustrate a good ability of CAS-ESM2.0 in simulating carbon-climate interactions,even though uncertainties remain in the processes involved.This paper reports an important stage of the development of CAS-ESM with the coupling of carbon and climate,which will provide significant scientific support for climate research and China’s goal of carbon neutrality.展开更多
This study assesses sea ice thickness(SIT)from the historical run of the Coupled Model Inter-comparison Project Phase 6(CMIP6).The SIT reanalysis from the Pan-Arctic Ice Ocean Modeling and Assimilation System(PIOMAS)p...This study assesses sea ice thickness(SIT)from the historical run of the Coupled Model Inter-comparison Project Phase 6(CMIP6).The SIT reanalysis from the Pan-Arctic Ice Ocean Modeling and Assimilation System(PIOMAS)product is chosen as the validation reference data.Results show that most models can adequately reproduce the climatological mean,seasonal cycle,and long-term trend of Arctic Ocean SIT during 1979-2014,but significant inter-model spread exists.Differences in simulated SIT patterns among the CMIP6 models may be related to model resolution and sea ice model components.By comparing the climatological mean and trend for SIT among all models,the Arctic SIT change in different seas during 1979-2014 is evaluated.Under the scenario of historical radiative forcing,the Arctic SIT will probably exponentially decay at-18%(10 yr)-1 and plausibly reach its minimum(equilibrium)of 0.47 m since the 2070s.展开更多
An enhanced Warm Arctic-Cold Eurasia(WACE)pattern has been a notable feature in recent winters of the Northern Hemisphere.However,divergent results between model and observational studies of the WACE still remain.This...An enhanced Warm Arctic-Cold Eurasia(WACE)pattern has been a notable feature in recent winters of the Northern Hemisphere.However,divergent results between model and observational studies of the WACE still remain.This study evaluates the performance of 39 climate models participating in the Coupled Model Intercomparison Project Phase 6(CMIP6)in simulating the WACE pattern in winter of 1980-2014 and explores the key factors causing the differences in the simulation capability among the models.The results show that the multimodel ensemble(MME)can better simulate the spatial distribution of the WACE pattern than most single models.Models that can/cannot simulate both the climatology and the standard deviation of the Eurasian winter surface air temperature well,especially the latter,usually can/cannot simulate the WACE pattern well.This mainly results from the different abilities of the models to simulate the range and intensity of the warm anomaly in the Barents Sea-Kara seas(BKS)region.Further analysis shows that a good performance of the models in the BKS area is usually related to their ability to simulate location and persistence of Ural blocking(UB),which can transport heat to the BKS region,causing the warm Arctic,and strengthen the westerly trough downstream,cooling central Eurasia.Therefore,simulation of UB is key and significantly affects the model’s performance in simulating the WACE.展开更多
A new 6-DOF micro-manipulation robot based on 3-PPTTRS parallel mechanisms in combination with flexure hinges is proposed. The design principle of the mechanism is introduced, and the kinematics analysis method based ...A new 6-DOF micro-manipulation robot based on 3-PPTTRS parallel mechanisms in combination with flexure hinges is proposed. The design principle of the mechanism is introduced, and the kinematics analysis method based on differentiation is used to get the (inverse) kinematics equations. Then a micro-scale motion precision simulation method is proposed according to finite element analysis (FEA), and the prediction of robot’s motion precision in design phase is realized. The simulation result indicates that the 6-DOF micro-manipulation robot can meet the design specification.展开更多
A theoretical method for selecting strip rolling mill type that considered shape control ability was established using the figure alteration range that was worked by the alteration track of vector expressing strip'...A theoretical method for selecting strip rolling mill type that considered shape control ability was established using the figure alteration range that was worked by the alteration track of vector expressing strip's cross section (crown) to express the shape control ability of rolling mill. With the mathematical models and simulation software that were developed by the authors' own models, four types of mills were aimed, including HCM (6-high middle rolls shift type HC (high crown) -mill), HCMW (6-high middle rolls and work rolls shift type HC-mill), UCM (6-high middle rolls shift type HC-mill with middle roll bender) and UCMW (6-high middle rolls and work rolls shift type HC-mill with middle roll bender), and the shape and crown control ability of every mill type was analyzed and compared. An appropriate arrangement mode of tandem mill was brought forward. The results show that UCMW mill is a perfect choice for controlling shape and crown, and the area of control characteristics curve of UCMW (or UCM) is twice than that of HCM, but UCM mill is also a good choice for its simple frame. In other word, the shape and crown controlling ability of UCMW mill is better than that of UCM mill, but the frame of UCM mill is simpler than that of UCMW mill. As for the final type of mill, should be synthetically decided by thinking over fund and equipment technology.展开更多
This study provides a comprehensive evaluation of historical surface soil moisture simulation(1979-2012)over Eurasia at annual and seasonal time scales between two medium-resolution versions of the Beijing Climate Cen...This study provides a comprehensive evaluation of historical surface soil moisture simulation(1979-2012)over Eurasia at annual and seasonal time scales between two medium-resolution versions of the Beijing Climate Center Climate System Model(BCC-CSM)—one that is currently participating in phase 6 of the Coupled Model Intercomparison Project(CMIP6),i.e.,BCC-CSM2-MR,and the other,BCC-CSM1.1m,which participated in CMIP5.We show that BCC-CSM2-MR is more skillful in reproducing the climate mean states and standard deviations of soil moisture,with pattern correlations increased and biases reduced significantly.BCC-CSM2-MR performs better in capturing the first two primary patterns of soil moisture anomalies,where the period of the corresponding time series is closer to that of reference data.Comparisons show that BCC-CSM2-MR performs at a high level among multiple models of CMIP6 in terms of centered pattern correlation and“amplitude of variation”(relative standard deviation).In general,the centered pattern correlation of BCC-CSM2-MR,ranging from 0.61 to 0.87,is higher than the multi-model mean of CMIP6,and the relative standard deviation is 0.75,which surmounts the overestimations in most of the CMIP6 models.Due to the vital role played by precipitation in land-atmosphere interaction,possible causes of the improvement of soil moisture simulation are further related to precipitation in BCC-CSM2-MR.The results indicate that a better description of the relationship between soil moisture and precipitation and a better reproduction of the climate mean precipitation by the model may result in the improved performance of soil moisture simulation.展开更多
This paper describes the historical simulations produced by the Chinese Academy of Meteorological Sciences(CAMS)climate system model(CAMS-CSM),which are contributing to phase 6 of the Coupled Model Intercomparison Pro...This paper describes the historical simulations produced by the Chinese Academy of Meteorological Sciences(CAMS)climate system model(CAMS-CSM),which are contributing to phase 6 of the Coupled Model Intercomparison Project(CMIP6).The model description,experiment design and model outputs are presented.Three members’historical experiments are conducted by CAMS-CSM,with two members starting from different initial conditions,and one excluding the stratospheric aerosol to identify the effect of volcanic eruptions.The outputs of the historical experiments are also validated using observational data.It is found that the model can reproduce the climatological mean states and seasonal cycle of the major climate system quantities,including the surface air temperature,precipitation,and the equatorial thermocline.The long-term trend of air temperature and precipitation is also reasonably captured by CAMS-CSM.There are still some biases in the model that need further improvement.This paper can help the users to better understand the performance and the datasets of CAMS-CSM.展开更多
Till now, there have been lots of researches on numerical simulation of vortex-induced vibration. Acceptable results have been obtained for fixed cylinders with low Reynolds number. However, for responses of 2-DOF vor...Till now, there have been lots of researches on numerical simulation of vortex-induced vibration. Acceptable results have been obtained for fixed cylinders with low Reynolds number. However, for responses of 2-DOF vortex-induced vibration with low mass ratio, the accuracy is not satisfactory, especially for the maximum amplitudes. In Jauvtis and Williamson's work, the maximum amplitude of the cylinder with low mass ratio m*=2.6 can reach as large as 1.5D to be called as the "super-upper branch", but from current literatures, few simulation results can achieve such value, even fail to capture the upper branch. Besides, it is found that the amplitude decays too fast in the lower branch with the RANS-based turbulence model. The reason is likely to be the defects of the turbulence model itself in the prediction of unsteady separated flows as well as the unreasonable setting of the numerical simulation parameters. Aiming at above issues, a modified turbulence model is proposed in this paper, and the effect of the acceleration of flow field on the response of vortex-induced vibration is studied based on OpenFOAM. By analyzing the responses of amplitude, phase and trajectory, frequency and vortex mode, it is proved that the vortex-induced vibration can be predicted accurately with the modified turbulence model under appropriate flow field acceleration.展开更多
The healing behavior of shrinkage cavity inside the cast Ti6Al4V alloy during hot isostatic pressing(HIP)was investigated experimentally by interrupted hot isostatic pressing tests.The X-ray micro computed tomography ...The healing behavior of shrinkage cavity inside the cast Ti6Al4V alloy during hot isostatic pressing(HIP)was investigated experimentally by interrupted hot isostatic pressing tests.The X-ray micro computed tomography was used to record the morphology changes before and after hot isostatic pressing.The two-dimensional geometry obtained by the microCT scan was used in simulation to study the evolution of the real shrinkage cavity during hot isostatic pressing.Shrinkage cavities,shrinkage porosity and small gas pores can be effectively eliminated under proper HIP conditions.The two-dimensional morphology in the simulation results agrees well with the experimental results.This study reveals that plastic deformation,creep and diffusion are the main mechanisms of cavity closure during hot isostatic pressing.In addition,the simplified elliptical pores with aspect ratios at different positions were used to replace the real pores to further study the factors affecting the position of dimples after HIP by simulation.It is found that the position of the dimples mainly depends on the aspect ratio of the elliptical pore and the distance between the pore surface and the external surface of the geometric model.展开更多
Large-ensemble simulations of the atmosphere-only time-slice experiments for the Polar Amplification Model Intercomparison Project(PAMIP)were carried out by the model group of the Chinese Academy of Sciences(CAS)Flexi...Large-ensemble simulations of the atmosphere-only time-slice experiments for the Polar Amplification Model Intercomparison Project(PAMIP)were carried out by the model group of the Chinese Academy of Sciences(CAS)Flexible Global Ocean-Atmosphere-Land System(FGOALS-f3-L).Eight groups of experiments forced by different combinations of the sea surface temperature(SST)and sea ice concentration(SIC)for pre-industrial,present-day,and future conditions were performed and published.The time-lag method was used to generate the 100 ensemble members,with each member integrating from 1 April 2000 to 30 June 2001 and the first two months as the spin-up period.The basic model responses of the surface air temperature(SAT)and precipitation were documented.The results indicate that Arctic amplification is mainly caused by Arctic SIC forcing changes.The SAT responses to the Arctic SIC decrease alone show an obvious increase over high latitudes,which is similar to the results from the combined forcing of SST and SIC.However,the change in global precipitation is dominated by the changes in the global SST rather than SIC,partly because tropical precipitation is mainly driven by local SST changes.The uncertainty of the model responses was also investigated through the analysis of the large-ensemble members.The relative roles of SST and SIC,together with their combined influence on Arctic amplification,are also discussed.All of these model datasets will contribute to PAMIP multi-model analysis and improve the understanding of polar amplification.展开更多
Single crystal silicon carbide(SiC)is widely used for optoelectronics applications.Due to the anisotropic characteristics of single crystal materials,the C face and Si face of single crystal SiC have different physica...Single crystal silicon carbide(SiC)is widely used for optoelectronics applications.Due to the anisotropic characteristics of single crystal materials,the C face and Si face of single crystal SiC have different physical properties,which may fit for particular application purposes.This paper presents an investigation of the material removal and associated subsurface defects in a set of scratching tests on the C face and Si face of 4H-SiC and 6H-SiC materials using molecular dynamics simulations.The investigation reveals that the sample material deformation consists of plastic,amorphous transformations and dislocation slips that may be prone to brittle split.The results showed that the material removal at the C face is more effective with less amorphous deformation than that at the Si face.Such a phenomenon in scratching relates to the dislocations on the basal plane(0001)of the SiC crystal.Subsurface defects were reduced by applying scratching cut depths equal to integer multiples of a half molecular lattice thickness,which formed a foundation for selecting machining control parameters for the best surface quality.展开更多
The atomic scale computer simulation for initial precipitation mechanism of Ni75Al6V19 alloy was carried out for the first time by employing the microscopic diffusion equation. The initial precipitation process was in...The atomic scale computer simulation for initial precipitation mechanism of Ni75Al6V19 alloy was carried out for the first time by employing the microscopic diffusion equation. The initial precipitation process was invest igated throughsimulating the atomic pictures and calculating the order parameters of the two kinds of ordered phases. Simulationresults show that the γ′ordered phase precipitated earlier than θ ordered phase by congruent ordering+spinodal decomposition mechanism and thus produced a nonstoicheometric γ′ single ordered phase. Then, the nonstoichiometricθ phase precipitated by a non-classical nucleation and growth mechanism at the APBS of γ′ phase.展开更多
We present a theoretical study of the magnetic properties of the lanthanum copper manganate double perovskite La2CuMnO6 ceramic,using Monte Carlo simulations.We analyze and discuss the ground state phase diagrams in d...We present a theoretical study of the magnetic properties of the lanthanum copper manganate double perovskite La2CuMnO6 ceramic,using Monte Carlo simulations.We analyze and discuss the ground state phase diagrams in different planes to show the effect of every physical parameter.Based on the Monte Carlo simulations,which combine Metropolis algorithm and Ising model,we explore the thermal behavior of the total magnetization and susceptibility.We also present and discuss the influence of physical parameters such as the external magnetic field,the exchange coupling interactions between magnetic atoms,and the exchange magnetic field on the magnetization of the system.Moreover,the critical temperature of the system is about Tc=70 K,in agreement with the experimental value.Finally,the hysteresis loops of La2CuMnO6 are discussed.展开更多
基金Ningbo Science and Technology Plan Project(Grant No.2023Z043)。
文摘This study investigates the breakdown voltage characteristics in sulfur hexafluoride(SF6)circuit breakers,employing a novel approach that integrates both experimental investigations and finite element simulations.Utilizing a sphere-sphere electrode configuration,we meticulously measured the relationship between breakdown voltage and electrode gap distances ranging from 1 cm to 4.5 cm.Subsequent simulations,conducted using COMSOL Multiphysics,mirrored the experimental setup to validate the model’s accuracy through a comparison of the breakdown voltage-electrode gap distance curves.The simulation results not only aligned closely with the experimental data but also allowed the extraction of detailed electric field strength,electric potential contours,and electric current flow curves at the breakdown voltage for gap distances extending from 1 to 4.5 cm.Extending the analysis,the study explored the electric field and potential distribution at a constant voltage of 72.5 kV for gap distances between 1 to 10 cm,identifying the maximum electric field strength.A comprehensive comparison of five different electrode configurations(sphere-sphere,sphere-rod,sphere-plane,rod-plane,rod-rod)at 72.5 kV and a gap distance of 1.84 cm underscored the significant influence of electrode geometry on the breakdown process.Moreover,the research contrasts the breakdown voltage in SF6 with that in air,emphasizing SF6’s superior insulating properties.This investigation not only elucidates the intricate dynamics of electrical breakdown in SF6 circuit breakers but also contributes valuable insights into the optimal electrode configurations and the potential for alternative insulating gases,steering future advancements in high-voltage circuit breaker technology.
基金the National Key Research and Development Program of China(Grant No.2022YFE0106500)the Youth Innovation Promotion Association of the Chinese Academy of Sciences(Grant No.2022076)+1 种基金the National Key Scientific and Technological Infrastructure project“Earth System Numerical Simulation Facility”(EarthLab2023-EL-ZD-00012)。
文摘The atmospheric carbon dioxide(CO_(2))concentration has been increasing rapidly since the Industrial Revolution,which has led to unequivocal global warming and crucial environmental change.It is extremely important to investigate the interactions among atmospheric CO_(2),the physical climate system,and the carbon cycle of the underlying surface for a better understanding of the Earth system.Earth system models are widely used to investigate these interactions via coupled carbon-climate simulations.The Chinese Academy of Sciences Earth System Model version 2(CAS-ESM2.0)has successfully fixed a two-way coupling of atmospheric CO_(2)with the climate and carbon cycle on land and in the ocean.Using CAS-ESM2.0,we conducted a coupled carbon-climate simulation by following the CMIP6 proposal of a historical emissions-driven experiment.This paper examines the modeled CO_(2)by comparison with observed CO_(2)at the sites of Mauna Loa and Barrow,and the Greenhouse Gases Observing Satellite(GOSAT)CO_(2)product.The results showed that CAS-ESM2.0 agrees very well with observations in reproducing the increasing trend of annual CO_(2)during the period 1850-2014,and in capturing the seasonal cycle of CO_(2)at the two baseline sites,as well as over northern high latitudes.These agreements illustrate a good ability of CAS-ESM2.0 in simulating carbon-climate interactions,even though uncertainties remain in the processes involved.This paper reports an important stage of the development of CAS-ESM with the coupling of carbon and climate,which will provide significant scientific support for climate research and China’s goal of carbon neutrality.
基金the National Natural Science Foundation of China(Grant Nos.41922044 and 41941009)the National Key R&D Program of China(Grant No.2019YFA0607004 and 2022YFE0106300)+1 种基金the Guangdong Basic and Applied Basic Research Foundation(Grant Nos.2020B1515020025 and 2019A1515110295)the Norges Forskningsråd(Grant No.328886).
文摘This study assesses sea ice thickness(SIT)from the historical run of the Coupled Model Inter-comparison Project Phase 6(CMIP6).The SIT reanalysis from the Pan-Arctic Ice Ocean Modeling and Assimilation System(PIOMAS)product is chosen as the validation reference data.Results show that most models can adequately reproduce the climatological mean,seasonal cycle,and long-term trend of Arctic Ocean SIT during 1979-2014,but significant inter-model spread exists.Differences in simulated SIT patterns among the CMIP6 models may be related to model resolution and sea ice model components.By comparing the climatological mean and trend for SIT among all models,the Arctic SIT change in different seas during 1979-2014 is evaluated.Under the scenario of historical radiative forcing,the Arctic SIT will probably exponentially decay at-18%(10 yr)-1 and plausibly reach its minimum(equilibrium)of 0.47 m since the 2070s.
基金the National Natural Science Foundation of China(Grant Nos.41790471,42075040,and U1902209)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA20100304)the National Key Research and Development Program of China(2018YFA0606203,2019YFC1510400).
文摘An enhanced Warm Arctic-Cold Eurasia(WACE)pattern has been a notable feature in recent winters of the Northern Hemisphere.However,divergent results between model and observational studies of the WACE still remain.This study evaluates the performance of 39 climate models participating in the Coupled Model Intercomparison Project Phase 6(CMIP6)in simulating the WACE pattern in winter of 1980-2014 and explores the key factors causing the differences in the simulation capability among the models.The results show that the multimodel ensemble(MME)can better simulate the spatial distribution of the WACE pattern than most single models.Models that can/cannot simulate both the climatology and the standard deviation of the Eurasian winter surface air temperature well,especially the latter,usually can/cannot simulate the WACE pattern well.This mainly results from the different abilities of the models to simulate the range and intensity of the warm anomaly in the Barents Sea-Kara seas(BKS)region.Further analysis shows that a good performance of the models in the BKS area is usually related to their ability to simulate location and persistence of Ural blocking(UB),which can transport heat to the BKS region,causing the warm Arctic,and strengthen the westerly trough downstream,cooling central Eurasia.Therefore,simulation of UB is key and significantly affects the model’s performance in simulating the WACE.
基金the Research Fund for the Doctoral Programof Higher Education(20060007023)
文摘A new 6-DOF micro-manipulation robot based on 3-PPTTRS parallel mechanisms in combination with flexure hinges is proposed. The design principle of the mechanism is introduced, and the kinematics analysis method based on differentiation is used to get the (inverse) kinematics equations. Then a micro-scale motion precision simulation method is proposed according to finite element analysis (FEA), and the prediction of robot’s motion precision in design phase is realized. The simulation result indicates that the 6-DOF micro-manipulation robot can meet the design specification.
基金Project (50374058) supported by the National Natural Science Foundation of China and Shanghai Baosteel Group Co.
文摘A theoretical method for selecting strip rolling mill type that considered shape control ability was established using the figure alteration range that was worked by the alteration track of vector expressing strip's cross section (crown) to express the shape control ability of rolling mill. With the mathematical models and simulation software that were developed by the authors' own models, four types of mills were aimed, including HCM (6-high middle rolls shift type HC (high crown) -mill), HCMW (6-high middle rolls and work rolls shift type HC-mill), UCM (6-high middle rolls shift type HC-mill with middle roll bender) and UCMW (6-high middle rolls and work rolls shift type HC-mill with middle roll bender), and the shape and crown control ability of every mill type was analyzed and compared. An appropriate arrangement mode of tandem mill was brought forward. The results show that UCMW mill is a perfect choice for controlling shape and crown, and the area of control characteristics curve of UCMW (or UCM) is twice than that of HCM, but UCM mill is also a good choice for its simple frame. In other word, the shape and crown controlling ability of UCMW mill is better than that of UCM mill, but the frame of UCM mill is simpler than that of UCMW mill. As for the final type of mill, should be synthetically decided by thinking over fund and equipment technology.
基金supported by the National Key Research and Development Program of China(Grant Nos.2018YFC1506004 and 2016YFA0602602).
文摘This study provides a comprehensive evaluation of historical surface soil moisture simulation(1979-2012)over Eurasia at annual and seasonal time scales between two medium-resolution versions of the Beijing Climate Center Climate System Model(BCC-CSM)—one that is currently participating in phase 6 of the Coupled Model Intercomparison Project(CMIP6),i.e.,BCC-CSM2-MR,and the other,BCC-CSM1.1m,which participated in CMIP5.We show that BCC-CSM2-MR is more skillful in reproducing the climate mean states and standard deviations of soil moisture,with pattern correlations increased and biases reduced significantly.BCC-CSM2-MR performs better in capturing the first two primary patterns of soil moisture anomalies,where the period of the corresponding time series is closer to that of reference data.Comparisons show that BCC-CSM2-MR performs at a high level among multiple models of CMIP6 in terms of centered pattern correlation and“amplitude of variation”(relative standard deviation).In general,the centered pattern correlation of BCC-CSM2-MR,ranging from 0.61 to 0.87,is higher than the multi-model mean of CMIP6,and the relative standard deviation is 0.75,which surmounts the overestimations in most of the CMIP6 models.Due to the vital role played by precipitation in land-atmosphere interaction,possible causes of the improvement of soil moisture simulation are further related to precipitation in BCC-CSM2-MR.The results indicate that a better description of the relationship between soil moisture and precipitation and a better reproduction of the climate mean precipitation by the model may result in the improved performance of soil moisture simulation.
基金supported by the National Key Research and Development Program of China(Grant No.2019YFC1510001)the National Natural Science Foundation of China(Grant No.91637210)+1 种基金the Basic Research Fund of CAMS(Grant No.2018Z007)the Jiangsu Collaborative Innovation Center for Climate Change。
文摘This paper describes the historical simulations produced by the Chinese Academy of Meteorological Sciences(CAMS)climate system model(CAMS-CSM),which are contributing to phase 6 of the Coupled Model Intercomparison Project(CMIP6).The model description,experiment design and model outputs are presented.Three members’historical experiments are conducted by CAMS-CSM,with two members starting from different initial conditions,and one excluding the stratospheric aerosol to identify the effect of volcanic eruptions.The outputs of the historical experiments are also validated using observational data.It is found that the model can reproduce the climatological mean states and seasonal cycle of the major climate system quantities,including the surface air temperature,precipitation,and the equatorial thermocline.The long-term trend of air temperature and precipitation is also reasonably captured by CAMS-CSM.There are still some biases in the model that need further improvement.This paper can help the users to better understand the performance and the datasets of CAMS-CSM.
基金financially supported by the National Natural Science Foundation of China(Grant No.51509045)
文摘Till now, there have been lots of researches on numerical simulation of vortex-induced vibration. Acceptable results have been obtained for fixed cylinders with low Reynolds number. However, for responses of 2-DOF vortex-induced vibration with low mass ratio, the accuracy is not satisfactory, especially for the maximum amplitudes. In Jauvtis and Williamson's work, the maximum amplitude of the cylinder with low mass ratio m*=2.6 can reach as large as 1.5D to be called as the "super-upper branch", but from current literatures, few simulation results can achieve such value, even fail to capture the upper branch. Besides, it is found that the amplitude decays too fast in the lower branch with the RANS-based turbulence model. The reason is likely to be the defects of the turbulence model itself in the prediction of unsteady separated flows as well as the unreasonable setting of the numerical simulation parameters. Aiming at above issues, a modified turbulence model is proposed in this paper, and the effect of the acceleration of flow field on the response of vortex-induced vibration is studied based on OpenFOAM. By analyzing the responses of amplitude, phase and trajectory, frequency and vortex mode, it is proved that the vortex-induced vibration can be predicted accurately with the modified turbulence model under appropriate flow field acceleration.
基金financially supportedby the National Key Research and Development Program of China(No.2020YFB1710100)the State Key Laboratory of Special Rare Metal Materials(Contract No.SKL2018K004)+1 种基金the Northwest Rare Metal Materials Research Institute Ningxia Co.,Ltd.,the National Natural Science Foundation of China(Grant No.51475181 and 51775205)the AECC Beijing Institute of Aeronautical Materials。
文摘The healing behavior of shrinkage cavity inside the cast Ti6Al4V alloy during hot isostatic pressing(HIP)was investigated experimentally by interrupted hot isostatic pressing tests.The X-ray micro computed tomography was used to record the morphology changes before and after hot isostatic pressing.The two-dimensional geometry obtained by the microCT scan was used in simulation to study the evolution of the real shrinkage cavity during hot isostatic pressing.Shrinkage cavities,shrinkage porosity and small gas pores can be effectively eliminated under proper HIP conditions.The two-dimensional morphology in the simulation results agrees well with the experimental results.This study reveals that plastic deformation,creep and diffusion are the main mechanisms of cavity closure during hot isostatic pressing.In addition,the simplified elliptical pores with aspect ratios at different positions were used to replace the real pores to further study the factors affecting the position of dimples after HIP by simulation.It is found that the position of the dimples mainly depends on the aspect ratio of the elliptical pore and the distance between the pore surface and the external surface of the geometric model.
基金the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA19070404)the National Natural Science Foundation of China(Grant Nos.42030602,91837101 and 91937302).
文摘Large-ensemble simulations of the atmosphere-only time-slice experiments for the Polar Amplification Model Intercomparison Project(PAMIP)were carried out by the model group of the Chinese Academy of Sciences(CAS)Flexible Global Ocean-Atmosphere-Land System(FGOALS-f3-L).Eight groups of experiments forced by different combinations of the sea surface temperature(SST)and sea ice concentration(SIC)for pre-industrial,present-day,and future conditions were performed and published.The time-lag method was used to generate the 100 ensemble members,with each member integrating from 1 April 2000 to 30 June 2001 and the first two months as the spin-up period.The basic model responses of the surface air temperature(SAT)and precipitation were documented.The results indicate that Arctic amplification is mainly caused by Arctic SIC forcing changes.The SAT responses to the Arctic SIC decrease alone show an obvious increase over high latitudes,which is similar to the results from the combined forcing of SST and SIC.However,the change in global precipitation is dominated by the changes in the global SST rather than SIC,partly because tropical precipitation is mainly driven by local SST changes.The uncertainty of the model responses was also investigated through the analysis of the large-ensemble members.The relative roles of SST and SIC,together with their combined influence on Arctic amplification,are also discussed.All of these model datasets will contribute to PAMIP multi-model analysis and improve the understanding of polar amplification.
基金financial support from National Natural Science Foundation of China(Grant No.51835004 and 51575197)Huaqiao University International Cultivation Program for Outstanding Postgraduates and Subsidized Projec for Postgraduates’Innovative Fund in Scientific Research of Huaqiao University(No.18011080010)。
文摘Single crystal silicon carbide(SiC)is widely used for optoelectronics applications.Due to the anisotropic characteristics of single crystal materials,the C face and Si face of single crystal SiC have different physical properties,which may fit for particular application purposes.This paper presents an investigation of the material removal and associated subsurface defects in a set of scratching tests on the C face and Si face of 4H-SiC and 6H-SiC materials using molecular dynamics simulations.The investigation reveals that the sample material deformation consists of plastic,amorphous transformations and dislocation slips that may be prone to brittle split.The results showed that the material removal at the C face is more effective with less amorphous deformation than that at the Si face.Such a phenomenon in scratching relates to the dislocations on the basal plane(0001)of the SiC crystal.Subsurface defects were reduced by applying scratching cut depths equal to integer multiples of a half molecular lattice thickness,which formed a foundation for selecting machining control parameters for the best surface quality.
基金This work was supported by the National Natural Science Foundation of China (Grant No.50071046)
文摘The atomic scale computer simulation for initial precipitation mechanism of Ni75Al6V19 alloy was carried out for the first time by employing the microscopic diffusion equation. The initial precipitation process was invest igated throughsimulating the atomic pictures and calculating the order parameters of the two kinds of ordered phases. Simulationresults show that the γ′ordered phase precipitated earlier than θ ordered phase by congruent ordering+spinodal decomposition mechanism and thus produced a nonstoicheometric γ′ single ordered phase. Then, the nonstoichiometricθ phase precipitated by a non-classical nucleation and growth mechanism at the APBS of γ′ phase.
文摘We present a theoretical study of the magnetic properties of the lanthanum copper manganate double perovskite La2CuMnO6 ceramic,using Monte Carlo simulations.We analyze and discuss the ground state phase diagrams in different planes to show the effect of every physical parameter.Based on the Monte Carlo simulations,which combine Metropolis algorithm and Ising model,we explore the thermal behavior of the total magnetization and susceptibility.We also present and discuss the influence of physical parameters such as the external magnetic field,the exchange coupling interactions between magnetic atoms,and the exchange magnetic field on the magnetization of the system.Moreover,the critical temperature of the system is about Tc=70 K,in agreement with the experimental value.Finally,the hysteresis loops of La2CuMnO6 are discussed.