Recently, there is a need of alternatives to antibiotics due to increasing antibiotic-resistant microorganism. Promising classes of bioactive polymers are 6-deoxy-6-amino cellulose derivatives. The purpose of the stud...Recently, there is a need of alternatives to antibiotics due to increasing antibiotic-resistant microorganism. Promising classes of bioactive polymers are 6-deoxy-6-amino cellulose derivatives. The purpose of the study was the assessment of the biocompatibility of 6-deoxy-6-aminoethyleneamino cellulose (AEAC) with different degree of substitution (DS). HaCaT keratinocyte cell viability was analyzed by measuring the cellular ATP content. The antibacterial activity against Staphylococcus aureus and Klebsiella pneumoniae was examined by microplate laser nephelometry. Thus, the ratio of half-maximal lethal concentration (LC50) and half-maximal inhibitory concentration (IC50) was calculated and described as biocompatibility index. The study revealed that biocompatibility of AEAC depends on the DS. AEAC of low DS (0.3) showed the best biocompatibility.展开更多
文摘Recently, there is a need of alternatives to antibiotics due to increasing antibiotic-resistant microorganism. Promising classes of bioactive polymers are 6-deoxy-6-amino cellulose derivatives. The purpose of the study was the assessment of the biocompatibility of 6-deoxy-6-aminoethyleneamino cellulose (AEAC) with different degree of substitution (DS). HaCaT keratinocyte cell viability was analyzed by measuring the cellular ATP content. The antibacterial activity against Staphylococcus aureus and Klebsiella pneumoniae was examined by microplate laser nephelometry. Thus, the ratio of half-maximal lethal concentration (LC50) and half-maximal inhibitory concentration (IC50) was calculated and described as biocompatibility index. The study revealed that biocompatibility of AEAC depends on the DS. AEAC of low DS (0.3) showed the best biocompatibility.