The reaction mechanism of 2-methoxybenzaldehyde, 4-bromo-indanone, malononitrile and ammonium acetate one-pot to form 6-(2-methoxyphenyl)-2-amino-6-bromo-5 Hindeno[1,2-b]pyridine-3-carbonitrile was studied by densit...The reaction mechanism of 2-methoxybenzaldehyde, 4-bromo-indanone, malononitrile and ammonium acetate one-pot to form 6-(2-methoxyphenyl)-2-amino-6-bromo-5 Hindeno[1,2-b]pyridine-3-carbonitrile was studied by density functional theory. The geometries of the reactants, transition states, intermediates and products were optimized at the PW91/DNP level. Vibration analysis was carried out to confirm the transition state structure. Reaction pathways were investigated in this study. The result indicates that the reaction Re→ TSB1→IMB1→ TSB2→ IMB2→TSB3→IMB3→TSB4→IMB4→TSB5→IMB5→TSB6→IMB6→TSB7→IMB7→ TSB8→IMB8→TSB9→IMB9→P2 is the main pathway, the activation energy of which is the lowest. The dominant product predicted theoretically is in agreement with the experiment results.展开更多
The title compound (R)-N′-[2-(4-methoxy-6-chloro)-pyrimidyl]-N-[3-methyl-2-(4- chlorophenyl)butyryl]-urea has been synthesized, and its crystal structure and biological behaviors were studied. Crystallographic ...The title compound (R)-N′-[2-(4-methoxy-6-chloro)-pyrimidyl]-N-[3-methyl-2-(4- chlorophenyl)butyryl]-urea has been synthesized, and its crystal structure and biological behaviors were studied. Crystallographic data: C17H18C12N4O3, Mr = 397.25, monoclinic, space group P21/c, a = 12.331(2), b = 14.025(3), c = 23.085(5) A, β = 99.607(4)°, Z = 8, V = 3936.2(13) A3, Dc = 1.341 g/cm^3, F(000) = 1648, R = 0.0718, wR = 0.1585 and/t(MoKα) = 0.353 mm^-1. The preliminary biological tests showed that the title compound has definite insecticidal and fungicidal activities.展开更多
Hydrazinolysis of 6-chloro-1-methyluracil followed by condensation of the product with different aromatic aldehyde gives the respective hydrazones which undergoes oxidative cyclization using thionyl chloride to obtain...Hydrazinolysis of 6-chloro-1-methyluracil followed by condensation of the product with different aromatic aldehyde gives the respective hydrazones which undergoes oxidative cyclization using thionyl chloride to obtain pyrazolo[3,4-d]pyrimidines in good yields. On the other hand, nitrosation of 6-aminouracils followed by the reaction with different arylidineanilines gives new xanthine derivatives. Finally, indenopyrrolopyrimidine and indenopteridine are obtained in good yields via the reaction of 6-aminouracils and 5,6-diaminouracil with ninhydrin respectively. The newly synthesized compounds show binding, chelation and fragmentation of the nucleic acid DNA.展开更多
Action of bromine in concentrated nitric acid allows carrying out mono- and polybromination of moderately deactivated aromatic compounds. 4-Chloronitrobenzene and isophthalic acid turnes into 3-bromo-4-chloronitrobenz...Action of bromine in concentrated nitric acid allows carrying out mono- and polybromination of moderately deactivated aromatic compounds. 4-Chloronitrobenzene and isophthalic acid turnes into 3-bromo-4-chloronitrobenzene and 5-bromoisophthalic acid at reaction with bromine in concentrated nitric acid at 20°C whereas in absence of bromine in the same conditions 4-chloro-1, 3-dinitrobenzene and 5-nitroisophthalic acid are formed accordingly. Presence of bromine in concentrated nitric acid changes nitrating capacity to brominating one. Terephthalic acid and phthalic anhydride at heating with bromine in concentrated nitric acid can be transformed to appropriating tetrabromo substituted compounds.展开更多
基金Project supported by the Scientific and Technological Research Program of Chongqing Municipal Education Commission(KJ1601215,KJ15012002)the Ministry of Education “Chunhui Plan”(Z2016177)
文摘The reaction mechanism of 2-methoxybenzaldehyde, 4-bromo-indanone, malononitrile and ammonium acetate one-pot to form 6-(2-methoxyphenyl)-2-amino-6-bromo-5 Hindeno[1,2-b]pyridine-3-carbonitrile was studied by density functional theory. The geometries of the reactants, transition states, intermediates and products were optimized at the PW91/DNP level. Vibration analysis was carried out to confirm the transition state structure. Reaction pathways were investigated in this study. The result indicates that the reaction Re→ TSB1→IMB1→ TSB2→ IMB2→TSB3→IMB3→TSB4→IMB4→TSB5→IMB5→TSB6→IMB6→TSB7→IMB7→ TSB8→IMB8→TSB9→IMB9→P2 is the main pathway, the activation energy of which is the lowest. The dominant product predicted theoretically is in agreement with the experiment results.
基金This work was sponsored by the National Key Technologies R & D Programs (No. 2004BA308A22-8)
文摘The title compound (R)-N′-[2-(4-methoxy-6-chloro)-pyrimidyl]-N-[3-methyl-2-(4- chlorophenyl)butyryl]-urea has been synthesized, and its crystal structure and biological behaviors were studied. Crystallographic data: C17H18C12N4O3, Mr = 397.25, monoclinic, space group P21/c, a = 12.331(2), b = 14.025(3), c = 23.085(5) A, β = 99.607(4)°, Z = 8, V = 3936.2(13) A3, Dc = 1.341 g/cm^3, F(000) = 1648, R = 0.0718, wR = 0.1585 and/t(MoKα) = 0.353 mm^-1. The preliminary biological tests showed that the title compound has definite insecticidal and fungicidal activities.
文摘Hydrazinolysis of 6-chloro-1-methyluracil followed by condensation of the product with different aromatic aldehyde gives the respective hydrazones which undergoes oxidative cyclization using thionyl chloride to obtain pyrazolo[3,4-d]pyrimidines in good yields. On the other hand, nitrosation of 6-aminouracils followed by the reaction with different arylidineanilines gives new xanthine derivatives. Finally, indenopyrrolopyrimidine and indenopteridine are obtained in good yields via the reaction of 6-aminouracils and 5,6-diaminouracil with ninhydrin respectively. The newly synthesized compounds show binding, chelation and fragmentation of the nucleic acid DNA.
文摘Action of bromine in concentrated nitric acid allows carrying out mono- and polybromination of moderately deactivated aromatic compounds. 4-Chloronitrobenzene and isophthalic acid turnes into 3-bromo-4-chloronitrobenzene and 5-bromoisophthalic acid at reaction with bromine in concentrated nitric acid at 20°C whereas in absence of bromine in the same conditions 4-chloro-1, 3-dinitrobenzene and 5-nitroisophthalic acid are formed accordingly. Presence of bromine in concentrated nitric acid changes nitrating capacity to brominating one. Terephthalic acid and phthalic anhydride at heating with bromine in concentrated nitric acid can be transformed to appropriating tetrabromo substituted compounds.