Objective:To explore the effects of 6-gingerol,asarinin,and deoxyschizandrindthe main components of Zingiber officinale(Willd.)Rosc.(Gan Jiang),Asarum heterotropoides f.var.mandshuricum(Maxim.)(Xi Xin),and Schisandra ...Objective:To explore the effects of 6-gingerol,asarinin,and deoxyschizandrindthe main components of Zingiber officinale(Willd.)Rosc.(Gan Jiang),Asarum heterotropoides f.var.mandshuricum(Maxim.)(Xi Xin),and Schisandra chinensis(Turcz.)Baill.(Wu Wei Zi),respectivelydon an interleukin(IL)-13einduced BEAS-2B cell model in vitro.Methods:The BEAS-2B cell model was established using 25 ng/mL IL-13 combined with 1%fetal bovine serum(FBS)in vitro.Mitoquinone mesylate(Mito-Q)treatment was used as a positive control group,and different concentrations of 6-gingerol,asarinin,and deoxyschizandrin were used to treat the models.The level of reactive oxygen species(ROS)production was detected by flow cytometry.The expression levels of LC3B,Beclin1,adenosine 50-monophosphate(AMP)eactivated protein kinase(AMPK),phosphory-lated-AMPeactivated protein kinase(P-AMPK),dynamin-related protein 1(DRP1),and mitochondrial fusion protein 2(MFN2)were detected by Western blot.Mitochondrial membrane potential(MMP)assay kit with JC-1 was utilized to detect the level of MMP.Results:The BEAS-2B cells exposed to 25 ng/mL IL-13 with 1%FBS showed an increased ROS level and a decreased MMP.6-Gingerol,asarinin,and deoxyschizandrin were able to downregulate ROS level and upregulate the MMP in the BEAS-2B model.Asarinin and deoxyschizandrin reduced the expression of autophagy protein LC3B,while deoxyschizandrin significantly increased the expression of DRP1 in the BEAS-2B model.Conclusion:6-Gingerol,asarinin,and deoxyschizandrin can reduce ROS generation and increase MMP,but have different regulatory effects on the expression of autophagy protein and mitochondrial mitotic protein.The three components have both synergistic and complementary effects in classic medicine compatibility.This study may provide an innovative strategy to reduce the lung inflammation related to IL-13.展开更多
BACKGROUND To date,there has been no effective treatment for intervertebral disc degeneration(IDD).Nucleus pulposus-derived mesenchymal stem cells(NPMSCs)showed encouraging results in IDD treatment,but the overexpress...BACKGROUND To date,there has been no effective treatment for intervertebral disc degeneration(IDD).Nucleus pulposus-derived mesenchymal stem cells(NPMSCs)showed encouraging results in IDD treatment,but the overexpression of reactive oxygen species(ROS)impaired the endogenous repair abilities of NPMSCs.6-gingerol(6-GIN)is an antioxidant and anti-inflammatory reagent that might protect NPMSCs from injury.AIM To investigate the effect of 6-GIN on NPMSCs under oxidative conditions and the potential mechanism.METHODS The cholecystokinin-8 assay was used to evaluate the cytotoxicity of hydrogen peroxide and the protective effects of 6-GIN.ROS levels were measured by 2´7´-dichlorofluorescin diacetate analysis.Matrix metalloproteinase(MMP)was detected by the tetraethylbenzimidazolylcarbocyanine iodide assay.TUNEL assay and Annexin V/PI double-staining were used to determine the apoptosis rate.Additionally,autophagy-related proteins(Beclin-1,LC-3,and p62),apoptosisassociated proteins(Bcl-2,Bax,and caspase-3),and PI3K/Akt signaling pathwayrelated proteins(PI3K and Akt)were evaluated by Western blot analysis.Autophagosomes were detected by transmission electron microscopy in NPMSCs.LC-3 was also detected by immunofluorescence.The mRNA expression of collagen II and aggrecan was evaluated by real-time polymerase chain reaction(RT-PCR),and the changes in collagen II and MMP-13 expression were verified through an immunofluorescence assay.RESULTS 6-GIN exhibited protective effects against hydrogen peroxide-induced injury in NPMSCs,decreased hydrogen peroxide-induced intracellular ROS levels,and inhibited cell apoptosis.6-GIN could increase Bcl-2 expression and decrease Bax and caspase-3 expression.The MMP,Annexin V-FITC/PI flow cytometry and TUNEL assay results further confirmed that 6-GIN treatment significantly inhibited NPMSC apoptosis induced by hydrogen peroxide.6-GIN treatment promoted extracellular matrix(ECM)expression by reducing the oxidative stress injury-induced increase in MMP-13 expression.6-GIN activated autophagy by increasing the expression of autophagy-related markers(Beclin-1 and LC-3)and decreasing the expression of p62.Autophagosomes were visualized by transmission electron microscopy.Pretreatment with 3-MA and BAF further confirmed that 6-GIN-mediated stimulation of autophagy did not reduce autophagosome turnover but increased autophagic flux.The PI3K/Akt pathway was also found to be activated by 6-GIN.6-GIN inhibited NPMSC apoptosis and ECM degeneration,in which autophagy and the PI3K/Akt pathway were involved.CONCLUSION 6-GIN efficiently decreases ROS levels,attenuates hydrogen peroxide-induced NPMSCs apoptosis,and protects the ECM from degeneration.6-GIN is a promising candidate for treating IDD.展开更多
The morbidity and mortality of cardiovascular diseases are very high,which has attracted more and more attention all over the world.Common treatment methods for clinical treatment of acute myocardial infarction includ...The morbidity and mortality of cardiovascular diseases are very high,which has attracted more and more attention all over the world.Common treatment methods for clinical treatment of acute myocardial infarction include direct percutaneous coronary intervention and coronary artery bypass grafting,which can quickly restore blocked coronary blood flow and reduce the infarct size.However,the inevitable ischemia/reperfusion injury will occur during the recovery of coronary blood flow,its pathological mechanism is complicated,and the Western medicine countermeasures are very limited.Among the current drugs for the treatment of cardiovascular diseases,traditional Chinese medicine has become a research hotspot due to its multiple targets,safety,and low side effects.Ginger is the fresh rhizome of Zingiber officinale Rosc.,a perennial herbaceous plant in the ginger family.It is a dual-purpose resource of medicine and food.Ginger has the functions of relieving the appearance and dispelling cold,warming up and relieving vomiting,resolving phlegm and relieving cough,and relieving fish and crab poison.The chemical components of ginger mainly include volatile oil,gingerol,diphenylheptane,etc..Among them,6-gingerol,as the main active component of gingerols,has obvious pharmacological effects in myocardial protection,anti-oxidation,anti-inflammatory,etc..Studies have shown that 6-gingerol protects myocardium mainly through anti-oxidative stress,anti-inflammatory,inhibiting cell apoptosis,and preventing calcium influx.①Anti-oxidative stress:oxidative stress is a state where oxidation and anti-oxidation in the body are out of balance,and it is also an important factor leading to myocardial damage.Many studies have confirmed that 6-gingerol has an antioxidant effect,and it is considered a natural antioxidant.6-gingerol can significantly reduce the degree of oxidative stress and the level of reactive oxygen species caused by cardiomyocyte damage,and has a significant cardioprotective effect.②Anti-inflammatory:inflammation can cause substantial cell damage and organ dysfunction,which is another important cause of myocardial damage.6-gingerol can reduce the levels of inflammatory factors such as interleukin-6,interleukin-1β,and tumor necrosis factor-αin cardiomyocytes,and at the same time inhibit the TLR4/NF-κB signaling pathway,an important regulatory pathway of inflammation,showing that it may improve myocardial damage through anti-inflammatory effects.③Inhibition of apoptosis:apoptosis is a complex and orderly process in the autonomous biochemical process of cells,and one of the main mechanisms of myocardial injury.This process can be roughly divided into three pathways:mitochondria,endoplasmic reticulum,and death receptors.Among them,the mitochondrial pathway plays an important role,and Bcl-2 and Bax located upstream of this pathway can regulate the entire process of cell apoptosis by regulating the permeability of the mitochondrial membrane.Studies have found that the preventive application of 6-gingerol can reduce cell damage,reduce the number of apoptotic cells,reduce the activity of Bax and caspase-3,and increase the expression of Bcl-2.Therefore,6-gingerol pretreatment can reduce the damage of cardiomyocytes,and its mechanism may be related to the inhibition of apoptosis.④Prevent calcium influx:calcium overload is involved in the pathogenesis of myocardial ischemic injury,which may be related to excessive contracture,arrhythmia,and mitochondrial Ca2+accumulation that impairs myocardial function.6-gingerol inhibits the increase of intracellular Ca2+concentration by inhibiting L-type calcium current,thereby reducing extracellular Ca2+influx,thereby avoiding calcium overload and playing a cardioprotective effect.In summary,6-gingerol can effectively treat and improve myocardial ischemia/reperfusion injury,and it has great development potential in the fields of medicine and health products.展开更多
Ginger(Zingiber officinale Roscoe)has high economic value as medicinal and food resources.6-gingerol is the core medicinal constituents of ginger.In the present study,a local ginger cultivar of Chongqing was taken as ...Ginger(Zingiber officinale Roscoe)has high economic value as medicinal and food resources.6-gingerol is the core medicinal constituents of ginger.In the present study,a local ginger cultivar of Chongqing was taken as the research material.The ZoWRKY1 gene was cloned to determine its expression level in different ginger developmental phases and to analyze its correlation with 6-gingerol content.The expression level of ZoWRKY1 under different concentrations of NaCl stress was tested,and so was the correlation between ZoWRKY1’s expression level and the contents of 6-gingerol synthase genes,i.e.ZoPAL,ZoC4H and Zo4CL.The results showed that the cDNA of the cloned ZoWRKY1 gene is 1026 bp in total length,and ZoWRKY1 belongs to the second type member of the WRKY family;the expression level of ZoWRKY1 rose sharply in the second developmental phase of the ginger which was about one month after sowing,and there was a significant correlation between the expression level of ZoWRKY1 and the increase of 6-gingerol content;the expressions of ZoWRKY1 and 6-gingerol synthase genes ZoPAL,ZoC4H and Zo4CL had sharp rises under 25 g/L NaCl stress,and the expression level of ZoWRKY1 was closely related to that of ZoC4H or Zo4CL.Therefore,it was speculated that there was a regulatory correlation between ZoWRKY1 and ZoC4H or Zo4CL that can further affect the biosynthesis of 6-gingerol.展开更多
基金This study was supported by the National Natural Science Foundation of China(81403313)the Vertical Development Fund of Beijing University of Chinese Medicine(2019-ZXFZJJ-062).
文摘Objective:To explore the effects of 6-gingerol,asarinin,and deoxyschizandrindthe main components of Zingiber officinale(Willd.)Rosc.(Gan Jiang),Asarum heterotropoides f.var.mandshuricum(Maxim.)(Xi Xin),and Schisandra chinensis(Turcz.)Baill.(Wu Wei Zi),respectivelydon an interleukin(IL)-13einduced BEAS-2B cell model in vitro.Methods:The BEAS-2B cell model was established using 25 ng/mL IL-13 combined with 1%fetal bovine serum(FBS)in vitro.Mitoquinone mesylate(Mito-Q)treatment was used as a positive control group,and different concentrations of 6-gingerol,asarinin,and deoxyschizandrin were used to treat the models.The level of reactive oxygen species(ROS)production was detected by flow cytometry.The expression levels of LC3B,Beclin1,adenosine 50-monophosphate(AMP)eactivated protein kinase(AMPK),phosphory-lated-AMPeactivated protein kinase(P-AMPK),dynamin-related protein 1(DRP1),and mitochondrial fusion protein 2(MFN2)were detected by Western blot.Mitochondrial membrane potential(MMP)assay kit with JC-1 was utilized to detect the level of MMP.Results:The BEAS-2B cells exposed to 25 ng/mL IL-13 with 1%FBS showed an increased ROS level and a decreased MMP.6-Gingerol,asarinin,and deoxyschizandrin were able to downregulate ROS level and upregulate the MMP in the BEAS-2B model.Asarinin and deoxyschizandrin reduced the expression of autophagy protein LC3B,while deoxyschizandrin significantly increased the expression of DRP1 in the BEAS-2B model.Conclusion:6-Gingerol,asarinin,and deoxyschizandrin can reduce ROS generation and increase MMP,but have different regulatory effects on the expression of autophagy protein and mitochondrial mitotic protein.The three components have both synergistic and complementary effects in classic medicine compatibility.This study may provide an innovative strategy to reduce the lung inflammation related to IL-13.
基金Supported by National Natural Science Foundation of China,No.81972136National Natural Science Foundation for Young Scholars of China,No.81401830+3 种基金Guangxi Natural Science Foundation General Project,No.2018JJA14775Young Medical Scholars Major Program of Jiangsu Province,No.QNRC2016342Innovation Team Project of Jiangsu Province,No.CXTDB2017004and Key Funding Project of Maternal and Child Health Research of Jiangsu Province,No.F201801.
文摘BACKGROUND To date,there has been no effective treatment for intervertebral disc degeneration(IDD).Nucleus pulposus-derived mesenchymal stem cells(NPMSCs)showed encouraging results in IDD treatment,but the overexpression of reactive oxygen species(ROS)impaired the endogenous repair abilities of NPMSCs.6-gingerol(6-GIN)is an antioxidant and anti-inflammatory reagent that might protect NPMSCs from injury.AIM To investigate the effect of 6-GIN on NPMSCs under oxidative conditions and the potential mechanism.METHODS The cholecystokinin-8 assay was used to evaluate the cytotoxicity of hydrogen peroxide and the protective effects of 6-GIN.ROS levels were measured by 2´7´-dichlorofluorescin diacetate analysis.Matrix metalloproteinase(MMP)was detected by the tetraethylbenzimidazolylcarbocyanine iodide assay.TUNEL assay and Annexin V/PI double-staining were used to determine the apoptosis rate.Additionally,autophagy-related proteins(Beclin-1,LC-3,and p62),apoptosisassociated proteins(Bcl-2,Bax,and caspase-3),and PI3K/Akt signaling pathwayrelated proteins(PI3K and Akt)were evaluated by Western blot analysis.Autophagosomes were detected by transmission electron microscopy in NPMSCs.LC-3 was also detected by immunofluorescence.The mRNA expression of collagen II and aggrecan was evaluated by real-time polymerase chain reaction(RT-PCR),and the changes in collagen II and MMP-13 expression were verified through an immunofluorescence assay.RESULTS 6-GIN exhibited protective effects against hydrogen peroxide-induced injury in NPMSCs,decreased hydrogen peroxide-induced intracellular ROS levels,and inhibited cell apoptosis.6-GIN could increase Bcl-2 expression and decrease Bax and caspase-3 expression.The MMP,Annexin V-FITC/PI flow cytometry and TUNEL assay results further confirmed that 6-GIN treatment significantly inhibited NPMSC apoptosis induced by hydrogen peroxide.6-GIN treatment promoted extracellular matrix(ECM)expression by reducing the oxidative stress injury-induced increase in MMP-13 expression.6-GIN activated autophagy by increasing the expression of autophagy-related markers(Beclin-1 and LC-3)and decreasing the expression of p62.Autophagosomes were visualized by transmission electron microscopy.Pretreatment with 3-MA and BAF further confirmed that 6-GIN-mediated stimulation of autophagy did not reduce autophagosome turnover but increased autophagic flux.The PI3K/Akt pathway was also found to be activated by 6-GIN.6-GIN inhibited NPMSC apoptosis and ECM degeneration,in which autophagy and the PI3K/Akt pathway were involved.CONCLUSION 6-GIN efficiently decreases ROS levels,attenuates hydrogen peroxide-induced NPMSCs apoptosis,and protects the ECM from degeneration.6-GIN is a promising candidate for treating IDD.
基金Fund of Dean of Huachuang Institute of Areca Research-Hainan(HCBL2020YZ-012)。
文摘The morbidity and mortality of cardiovascular diseases are very high,which has attracted more and more attention all over the world.Common treatment methods for clinical treatment of acute myocardial infarction include direct percutaneous coronary intervention and coronary artery bypass grafting,which can quickly restore blocked coronary blood flow and reduce the infarct size.However,the inevitable ischemia/reperfusion injury will occur during the recovery of coronary blood flow,its pathological mechanism is complicated,and the Western medicine countermeasures are very limited.Among the current drugs for the treatment of cardiovascular diseases,traditional Chinese medicine has become a research hotspot due to its multiple targets,safety,and low side effects.Ginger is the fresh rhizome of Zingiber officinale Rosc.,a perennial herbaceous plant in the ginger family.It is a dual-purpose resource of medicine and food.Ginger has the functions of relieving the appearance and dispelling cold,warming up and relieving vomiting,resolving phlegm and relieving cough,and relieving fish and crab poison.The chemical components of ginger mainly include volatile oil,gingerol,diphenylheptane,etc..Among them,6-gingerol,as the main active component of gingerols,has obvious pharmacological effects in myocardial protection,anti-oxidation,anti-inflammatory,etc..Studies have shown that 6-gingerol protects myocardium mainly through anti-oxidative stress,anti-inflammatory,inhibiting cell apoptosis,and preventing calcium influx.①Anti-oxidative stress:oxidative stress is a state where oxidation and anti-oxidation in the body are out of balance,and it is also an important factor leading to myocardial damage.Many studies have confirmed that 6-gingerol has an antioxidant effect,and it is considered a natural antioxidant.6-gingerol can significantly reduce the degree of oxidative stress and the level of reactive oxygen species caused by cardiomyocyte damage,and has a significant cardioprotective effect.②Anti-inflammatory:inflammation can cause substantial cell damage and organ dysfunction,which is another important cause of myocardial damage.6-gingerol can reduce the levels of inflammatory factors such as interleukin-6,interleukin-1β,and tumor necrosis factor-αin cardiomyocytes,and at the same time inhibit the TLR4/NF-κB signaling pathway,an important regulatory pathway of inflammation,showing that it may improve myocardial damage through anti-inflammatory effects.③Inhibition of apoptosis:apoptosis is a complex and orderly process in the autonomous biochemical process of cells,and one of the main mechanisms of myocardial injury.This process can be roughly divided into three pathways:mitochondria,endoplasmic reticulum,and death receptors.Among them,the mitochondrial pathway plays an important role,and Bcl-2 and Bax located upstream of this pathway can regulate the entire process of cell apoptosis by regulating the permeability of the mitochondrial membrane.Studies have found that the preventive application of 6-gingerol can reduce cell damage,reduce the number of apoptotic cells,reduce the activity of Bax and caspase-3,and increase the expression of Bcl-2.Therefore,6-gingerol pretreatment can reduce the damage of cardiomyocytes,and its mechanism may be related to the inhibition of apoptosis.④Prevent calcium influx:calcium overload is involved in the pathogenesis of myocardial ischemic injury,which may be related to excessive contracture,arrhythmia,and mitochondrial Ca2+accumulation that impairs myocardial function.6-gingerol inhibits the increase of intracellular Ca2+concentration by inhibiting L-type calcium current,thereby reducing extracellular Ca2+influx,thereby avoiding calcium overload and playing a cardioprotective effect.In summary,6-gingerol can effectively treat and improve myocardial ischemia/reperfusion injury,and it has great development potential in the fields of medicine and health products.
文摘Ginger(Zingiber officinale Roscoe)has high economic value as medicinal and food resources.6-gingerol is the core medicinal constituents of ginger.In the present study,a local ginger cultivar of Chongqing was taken as the research material.The ZoWRKY1 gene was cloned to determine its expression level in different ginger developmental phases and to analyze its correlation with 6-gingerol content.The expression level of ZoWRKY1 under different concentrations of NaCl stress was tested,and so was the correlation between ZoWRKY1’s expression level and the contents of 6-gingerol synthase genes,i.e.ZoPAL,ZoC4H and Zo4CL.The results showed that the cDNA of the cloned ZoWRKY1 gene is 1026 bp in total length,and ZoWRKY1 belongs to the second type member of the WRKY family;the expression level of ZoWRKY1 rose sharply in the second developmental phase of the ginger which was about one month after sowing,and there was a significant correlation between the expression level of ZoWRKY1 and the increase of 6-gingerol content;the expressions of ZoWRKY1 and 6-gingerol synthase genes ZoPAL,ZoC4H and Zo4CL had sharp rises under 25 g/L NaCl stress,and the expression level of ZoWRKY1 was closely related to that of ZoC4H or Zo4CL.Therefore,it was speculated that there was a regulatory correlation between ZoWRKY1 and ZoC4H or Zo4CL that can further affect the biosynthesis of 6-gingerol.