期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
The influence of gradient mismatches on mechanical properties and microstructure of 2219-T6 aluminum alloy VP-TIG joints 被引量:2
1
作者 吕宗亮 李充 +4 位作者 万龙 侯振国 陈晓霞 吴昊 黄永宪 《China Welding》 EI CAS 2017年第4期20-28,共9页
In this paper,6 mm thick 2219-T6 aluminum alloy was joined by means of variable polarity tungsten-arc welding( VP-TIG) and the influence of gradient mismatches on VP-TIG joints is investigated. The average tensile str... In this paper,6 mm thick 2219-T6 aluminum alloy was joined by means of variable polarity tungsten-arc welding( VP-TIG) and the influence of gradient mismatches on VP-TIG joints is investigated. The average tensile strength of the joints reduces 32%,53% and 59%,when the mismatch of the joint was 0. 635 mm,1. 44 mm,1. 83 mm,respectively.Incomplete penetration,additional bending moment( Ma) and decrease of effective load region area are considered to explain this phenomenon. The fracture location of tensile specimens occurred at the weld zone( WZ) close to partial melt zone( PMZ),corresponding to a sharp decline of microhardness from PMZ to WZ. The original position of fracture is found at weld toe,where incomplete penetration forms due to the introduction of gradient mismatches. 展开更多
关键词 2219-t6 aluminum alloy VP-tIG GRADIENT MISMATCHES MICROSTRUCTURE mechanical properties
下载PDF
Effect of Conventional and Pulsed TIG Welding on Microstructural and Mechanical Characteristics of AA 6082-T6 Repair Welds
2
作者 NAING Thet Htet MUANGJUNBUREE Prapas 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第4期865-876,共12页
Repair welding of AA 6082-T6 joints was carried out using ER 4043 filler through the TIG welding process with or without pulsed current.Microstructure and mechanical characteristics of the joints before and after repa... Repair welding of AA 6082-T6 joints was carried out using ER 4043 filler through the TIG welding process with or without pulsed current.Microstructure and mechanical characteristics of the joints before and after repairing were investigated by examining macrostructure,microstructure,and distributions of porosity in the weld metal(WM),and by hardness,tensile,and bending tests.We observed that the welding current,phase transformations in heat-affected zone(HAZ)and porosity introduced in the WM during welding influence on its mechanical properties in sequence.The experimental results showed that the bead width and penetration as well as size of pores in the joints were mainly influenced by the welding currents.The sound joints were obtained at a welding current of 140 A with or without pulsed current when welding speed and gas flow rate were set at 20 cm·min-1 and 15 L·min-1,respectively.Among them,the decrease in mechanical properties of repair weld(RW)was directly related to the phase transformations in the over-ageing zone due to the double welding thermal cycles and elevated distribution of porosity in the WM.In addition,it was observed that the comparatively smaller grain size and lower porosity in WM of the RW produced by pulsed TIG welding gave a positive effect on its mechanical properties. 展开更多
关键词 repair welds pulsed TIG welding aluminum alloy 6082-t6 ER 4043 filler
下载PDF
Effects of nugget alloying on microstructures and properties of resistance spot welded joints of aluminum and steel 被引量:2
3
作者 张月莹 孙大千 +2 位作者 李洪梅 谷晓燕 柳艳军 《China Welding》 EI CAS 2016年第3期36-41,共6页
The resistance spot welding of 6063-T6 aluminum alloy and 16Mn steel was studied by nugget alloying. The results indicated that the Al-steel joint had characteristics of welding-brazing. The nugget zone consisted main... The resistance spot welding of 6063-T6 aluminum alloy and 16Mn steel was studied by nugget alloying. The results indicated that the Al-steel joint had characteristics of welding-brazing. The nugget zone consisted mainly of α-Al solid solution with dislocations and fine Mg2Si particles. The interface zone had a double-layer structure: Fe2Al5 layer at steel side and Fe4Al13 layer at Al nugget side. The nugget alloying has a significant effect on the joint properties by changing phase composition and refinement of grains. When alloy elements Cu, Zn, Ti and Ni were added, the tensile shear load of Al-steel joints reached 2 780 N, 2 910 N, 2 915 N and 2 929 N respectively, which increased by 24. 1%, 29.9%, 30. 1% and 30. 7% respectively compared with that (2 241 N) of joint without nugget alloying. Therefore, it is an effective way for improving mechanical properties of resistance spot welded Al-steel joints. 展开更多
关键词 6063-t6 aluminum alloy 16Mn steel resistance spot welding nugget alloying
下载PDF
Effect of Temperature on Material Transfer Behavior at Different Stages of Friction Stir Welded 7075-T6 Aluminum Alloy 被引量:6
4
作者 S.D.Ji Y.Y.Jin +3 位作者 Y.M.Yue S.S.Gao Y.X.Huang L.Wang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2013年第10期955-960,共6页
In this work, the morphologies of weld of 7075-T6 aluminum alloy via friction stir welding (FSW) were analyzed by optical microscopy, the temperature field was attained by numerical simulation, and the effect of tem... In this work, the morphologies of weld of 7075-T6 aluminum alloy via friction stir welding (FSW) were analyzed by optical microscopy, the temperature field was attained by numerical simulation, and the effect of temperature on material transfer behavior in the thermal-mechanical affected zone (TMAZ) at different stages was mainly investigated. The FSW process consists of three stages. It is very interesting to find that the maximum transfer displacement of material appears at the final stage of welding process, then at the stable stage and at the initial stage, which results from the difference of peak temperatures at different stages. At any stage, the material in TMAZ near the surface of weld transfers downwards, the material in the middle of weld moves upwards and the material near the bottom of weld hardly moves. In any cross section of weld, the largest transfer displacement of material appears in the middle of weld. The increase of rotational velocity and the decrease of welding speed are both beneficial to the transfer displacement of material in the middle of weld. 展开更多
关键词 Friction stir welding 7075-t6 aluminum alloy Thermal-mechanical affected zone Material transfer Numerical simulation
原文传递
On the Selection of a Composite Material for Two-Wheeler Foot Bracket Failure Prevention through Simulation and Mathematical Modeling
5
作者 S.M.Sivagami A.Bovas Herbert Bejaxhin +4 位作者 R.Gayathri T.Raja Vijay K.Punitharani P.Keerthi Vasan M.Meignanamoorthy 《Fluid Dynamics & Materials Processing》 EI 2022年第3期521-536,共16页
A foot bracket is a metal panel bracket used to mount and support the footrest in two-wheeler systems.It holds the footrest in place while rigidly supporting it.In working conditions,this element has often been observ... A foot bracket is a metal panel bracket used to mount and support the footrest in two-wheeler systems.It holds the footrest in place while rigidly supporting it.In working conditions,this element has often been observed to fail when specific load-fluctuation conditions are established at its rear end.Appropriate materials therefore need to be identified to overcome such a recurring failure.To address these issues,the present study has been implemented with the specific objective to determine the response of selected Al6061-T6 and Al7075-T6 Hybrid Metal Matrix Composites(HMMC).The results,obtained using the ANSYS Software,show that the selected composites can withstand 636,962 N/m^(2)of maximum stress and 8.88×10^(−6)m of minimum displacement.These results are also compared with relevant mathematical models and it is concluded that the identified material combination provides the required improvement of structural stability that can withstand the load fluctuation on the foot bracket. 展开更多
关键词 Foot bracket Al6061-t6 alloy CREO ANSYS STRESS DISPLACEMENT
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部