Friction stir butt welding of AA7075-T651 plates with thicknesses of 10 and 16 mm was investigated. Defect-free, full- penetration welds were obtained after careful process parameter selection. While the nuggets in bo...Friction stir butt welding of AA7075-T651 plates with thicknesses of 10 and 16 mm was investigated. Defect-free, full- penetration welds were obtained after careful process parameter selection. While the nuggets in both welds exhibited very fine reerystallized grains, and finer grains were observed in welds made on 10 mm thick plates. Microhardness surveys revealed that significant loss in hardness occurs in the heat-affected zone. The reduction in hardness due to the welding process is higher in the case of welds made on 16 mm thick plates. Welds made on 10 mm thick plates exhibited superior tensile properties compared with those made on 16 mm thick plates. Fracture during tensile test occurred in the heat-affected zone in both cases. TEM images of specimens revealed that the heat-affected zone consisted of widened precipitate-free zones along grain boundaries and partial dissolution of precipitates in the grain interiors. It is concluded that defect-free single pass welds can be made on AA7075-T651 thick plates using friction stir welding and the welds made on 10 mm thick plates exhibit high joint efficiency.展开更多
The plastic work-heat conversion coefficient is one key parameter for studying the work-heat conversion under dynamic deformation of materials. To explore this coefficient of 7075-T651 aluminum alloy under dynamic com...The plastic work-heat conversion coefficient is one key parameter for studying the work-heat conversion under dynamic deformation of materials. To explore this coefficient of 7075-T651 aluminum alloy under dynamic compression, dynamic compression experiments using the Hopkinson bar under four groups of strain rates were conducted, and the temperature signals were measured by constructing a transient infrared temperature measurement system. According to stress versus strain data as well as the corresponding temperature data obtained through the experiments, the influences of the strain and the strain rate on the coefficient of plastic work converted to heat were analyzed.The experimental results show that the coefficient of plastic work converted to heat of 7075-T651 aluminum alloy is not a constant at the range of 0.85–1 and is closely related to the strain and the strain rate. The change of internal structure of material under high strain rate reduces its energy storage capacity, and makes almost all plastic work convert into heat.展开更多
Metal inert gas(MIG)welding was conducted with 12 mm thick 6082-T651 aluminum alloy plate to investigate the microstructure and mechanical properties of welded joint.The microstructure and element distribution of weld...Metal inert gas(MIG)welding was conducted with 12 mm thick 6082-T651 aluminum alloy plate to investigate the microstructure and mechanical properties of welded joint.The microstructure and element distribution of weld seam were characterized by electron backscattered diffraction(EBSD)and electron probe microanalysis(EPMA).The weld seam has typical cube texture({001}<100>)characteristics.The closer to the center of weld seam,the weaker the texture feature,the higher the proportion of high-angle grain boundaries.The average tensile strength of joint was 232 MPa which is up to 72%of 6082 aluminum alloy base metal,and the bending angle for the root bend test sample reached 90°without cracks.The lack of strengthening phase and the existence of welding pores and inclusions in the weld seam caused the degradation of mechanical properties of resultant joint.The microhardness increased from the weld center to the base metal,but the overaging zone caused by welding thermal cycle was softening part of the joint,which had lower hardness than the weld seam.展开更多
The exfoliation corrosion (EFC) behavior of 7050-T6 aluminum alloy treated with various quench transfer time after solution heat treatment was investigated by standard EFC immersion tests, strength loss measurements...The exfoliation corrosion (EFC) behavior of 7050-T6 aluminum alloy treated with various quench transfer time after solution heat treatment was investigated by standard EFC immersion tests, strength loss measurements after EFC tests and electrochemical impedance spectroscope (EIS) technique. The results showed that EFC resistance of the alloy decreased with increasing quench transfer time. Backscattered electron scanning electron microscope (SEM) together with transmission electron microscope (TEM) observations revealed that the coverage ratio and microstructure of precipitates at grain boundary area are the most important factors which influence the EFC susceptibility of the alloy, while precipitate-free zone (PFZ) near grain boundary has no or only a minor effect on it. In addition, galvanostatic measurements of the alloy present a good correlation between EFC resistance and transients in potential. The cumulated number of transients in potential can be used to evaluate EFC resistance of the alloy.展开更多
基金financial support from Armament Research Board,DRDO,Ministry of Defence,India,through a R&D project No.ARMREB/MAA/ 2012/142
文摘Friction stir butt welding of AA7075-T651 plates with thicknesses of 10 and 16 mm was investigated. Defect-free, full- penetration welds were obtained after careful process parameter selection. While the nuggets in both welds exhibited very fine reerystallized grains, and finer grains were observed in welds made on 10 mm thick plates. Microhardness surveys revealed that significant loss in hardness occurs in the heat-affected zone. The reduction in hardness due to the welding process is higher in the case of welds made on 16 mm thick plates. Welds made on 10 mm thick plates exhibited superior tensile properties compared with those made on 16 mm thick plates. Fracture during tensile test occurred in the heat-affected zone in both cases. TEM images of specimens revealed that the heat-affected zone consisted of widened precipitate-free zones along grain boundaries and partial dissolution of precipitates in the grain interiors. It is concluded that defect-free single pass welds can be made on AA7075-T651 thick plates using friction stir welding and the welds made on 10 mm thick plates exhibit high joint efficiency.
基金supported by the National Nature Science Foundation of China (Grants 11132011 and 11472288)
文摘The plastic work-heat conversion coefficient is one key parameter for studying the work-heat conversion under dynamic deformation of materials. To explore this coefficient of 7075-T651 aluminum alloy under dynamic compression, dynamic compression experiments using the Hopkinson bar under four groups of strain rates were conducted, and the temperature signals were measured by constructing a transient infrared temperature measurement system. According to stress versus strain data as well as the corresponding temperature data obtained through the experiments, the influences of the strain and the strain rate on the coefficient of plastic work converted to heat were analyzed.The experimental results show that the coefficient of plastic work converted to heat of 7075-T651 aluminum alloy is not a constant at the range of 0.85–1 and is closely related to the strain and the strain rate. The change of internal structure of material under high strain rate reduces its energy storage capacity, and makes almost all plastic work convert into heat.
基金Project was supported by the National Natural Science Foundation of China(51674060)the Collaborative Innovation Center of Major Machine Manufacturing in Liaoning。
文摘Metal inert gas(MIG)welding was conducted with 12 mm thick 6082-T651 aluminum alloy plate to investigate the microstructure and mechanical properties of welded joint.The microstructure and element distribution of weld seam were characterized by electron backscattered diffraction(EBSD)and electron probe microanalysis(EPMA).The weld seam has typical cube texture({001}<100>)characteristics.The closer to the center of weld seam,the weaker the texture feature,the higher the proportion of high-angle grain boundaries.The average tensile strength of joint was 232 MPa which is up to 72%of 6082 aluminum alloy base metal,and the bending angle for the root bend test sample reached 90°without cracks.The lack of strengthening phase and the existence of welding pores and inclusions in the weld seam caused the degradation of mechanical properties of resultant joint.The microhardness increased from the weld center to the base metal,but the overaging zone caused by welding thermal cycle was softening part of the joint,which had lower hardness than the weld seam.
基金Project(2012CB619502)supported by the National Basic Research Program of China
文摘The exfoliation corrosion (EFC) behavior of 7050-T6 aluminum alloy treated with various quench transfer time after solution heat treatment was investigated by standard EFC immersion tests, strength loss measurements after EFC tests and electrochemical impedance spectroscope (EIS) technique. The results showed that EFC resistance of the alloy decreased with increasing quench transfer time. Backscattered electron scanning electron microscope (SEM) together with transmission electron microscope (TEM) observations revealed that the coverage ratio and microstructure of precipitates at grain boundary area are the most important factors which influence the EFC susceptibility of the alloy, while precipitate-free zone (PFZ) near grain boundary has no or only a minor effect on it. In addition, galvanostatic measurements of the alloy present a good correlation between EFC resistance and transients in potential. The cumulated number of transients in potential can be used to evaluate EFC resistance of the alloy.