Nanoscale spatial heterogeneity in ionic liquids is formed by the aggregation of cationic tail groups. The electrostatic interactions between polar groups and the collective van der Waals interactions between nonpolar...Nanoscale spatial heterogeneity in ionic liquids is formed by the aggregation of cationic tail groups. The electrostatic interactions between polar groups and the collective van der Waals interactions between nonpolar tail groups both contribute to the formation of tail domains, but the degrees of their contributions were unknown. In this work, by applying a strong external electric field to effectively overpower the electrostatic interactions between polar groups, we have determined that the tail aggregation is majorly attributed to the electrostatic interactions and the van der Waals interactions only have minor influence on the spatial heterogeneity phenomenon of ionic liquids.展开更多
基金Supported by the Hundred Talent Program of the Chinese Academy of Sciencesthe General Program of the National Natural Science Foundation of China under Grant No. 10974208
文摘Nanoscale spatial heterogeneity in ionic liquids is formed by the aggregation of cationic tail groups. The electrostatic interactions between polar groups and the collective van der Waals interactions between nonpolar tail groups both contribute to the formation of tail domains, but the degrees of their contributions were unknown. In this work, by applying a strong external electric field to effectively overpower the electrostatic interactions between polar groups, we have determined that the tail aggregation is majorly attributed to the electrostatic interactions and the van der Waals interactions only have minor influence on the spatial heterogeneity phenomenon of ionic liquids.