期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Prediction of hot tearing susceptibility of direct chill casting of AA6111 alloys via finite element simulations 被引量:4
1
作者 Dong-xu CHEN Rui-feng DOU +1 位作者 Jia-qiang HAN Jun-sheng WANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2020年第12期3161-3172,共12页
To predict hot tearing susceptibility(HTS)during solidification and improve the quality of Al alloy castings,constitutive equations for AA6111 alloys were developed using a direct finite element(FE)method.A hot tearin... To predict hot tearing susceptibility(HTS)during solidification and improve the quality of Al alloy castings,constitutive equations for AA6111 alloys were developed using a direct finite element(FE)method.A hot tearing model was established for direct chill(DC)casting of industrial AA6111 alloys via coupling FE model and hot tearing criterion.By applying this model to real manufacture processes,the effects of casting speed,bottom cooling,secondary cooling,and geometric variations on the HTS were revealed.The results show that the HTS of the billet increases as the speed and billet radius increase,while it reduces as the interfacial heat transfer coefficient at the bottom or secondary water-cooling rate increases.This model shows the capabilities of incorporating maximum pore fraction in simulating hot tearing initiation,which will have a significant impact on optimizing casting conditions and chemistry for minimizing HTS and thus controlling the casting quality. 展开更多
关键词 vehicle light-weighting AA6111 alloy direct chill casting hot tearing criterion pore fraction finite element simulation
下载PDF
Relationship among Mechanical Properties Anisotropy,Microstructure and Texture in AA 6111 Alloy Sheets 被引量:1
2
作者 汪小锋 郭明星 +3 位作者 CAO Lingyong PENG Xiangyang ZHANG Jishan ZHUANG Linzhong 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2016年第3期648-653,共6页
We comparatively studied the mechanical properties anisotropy, microstructure and texture of the commercial and the new developed AA6111 alloys through tensile test, optical microscopy, and XRD analysis. The results s... We comparatively studied the mechanical properties anisotropy, microstructure and texture of the commercial and the new developed AA6111 alloys through tensile test, optical microscopy, and XRD analysis. The results show that the anisotropy of mechanical properties for the developed AA6111 alloy is lower than that of the commercial alloy. The developed alloy possesses higher r value, lower Ar value and more uniform microstructure, compared with the commercial AA6111 alloy, indicating that the deep drawability of the developed alloy has been improved significantly. The recrystallization textures of the two alloy sheets are also different. The recrystallization texture of the commercial alloy sheet mainly includes Cube and { 114}〈311〉 orientations, while the recrystallization texture of developed alloy sheet consists of Cube, Goss and R orientations. The relationships among the deep drawabilities, microstructure and texture were discussed thereafter. 展开更多
关键词 AA6111 alloy mechanical properties anisotropy microstructure deep drawability TEXTURE
下载PDF
Microstructure characterization and quasi-static failure behavior of resistance spot welds of AA6111-T4 aluminum alloy 被引量:3
3
作者 吴赛楠 Bita GHAFFARI +3 位作者 Elizabeth HETRICK Mei LI 贾志宏 刘庆 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第12期3879-3885,共7页
The microstructure, microhardness and quasi-static failure behavior of resistance spot welds of AA6111-T4 aluminum alloy were experimentally investigated. Optical metallography and high-resolution hardness traverses w... The microstructure, microhardness and quasi-static failure behavior of resistance spot welds of AA6111-T4 aluminum alloy were experimentally investigated. Optical metallography and high-resolution hardness traverses were utilized to characterize the weld nugget, heat affected zone and base metal. The AA6111 spot welds displayed a softer nugget and hardened heat affected zone, compared with the base metal. The through-thickness hardness of the base metal sheet was not constant and had to be carefully considered to determine the effect of welding on material properties. Quasi-static lap-shear tensile tests were used to determine the failure load and failure mode. All tensile specimens failed through the interfacial fracture. This failure mode is consistent with the observed reduced hardness in the weld nugget. 展开更多
关键词 AA6111 aluminum alloy resistance spot welding microstructure MICROHARDNESS mechanical properties
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部