This paper considers a nonparametric varying coefficient regression with spatial data. A global smoothing procedure is developed by using B-spline function approximations for estimating the coefficient functions. Unde...This paper considers a nonparametric varying coefficient regression with spatial data. A global smoothing procedure is developed by using B-spline function approximations for estimating the coefficient functions. Under mild regularity assumptions,the global convergence rates of the B-spline estimators of the unknown coefficient functions are established. Asymptotic results show that our B-spline estimators achieve the optimal convergence rate. The asymptotic distributions of the B-spline estimators of the unknown coefficient functions are also derived. A procedure for selecting smoothing parameters is given. Finite sample properties of our procedures are studied through Monte Carlo simulations. Application of the proposed method is demonstrated by examining voting behaviors across US counties in the 1980 presidential election.展开更多
In this paper, we study the local asymptotic behavior of the regression spline estimator in the framework of marginal semiparametric model. Similarly to Zhu, Fung and He (2008), we give explicit expression for the asy...In this paper, we study the local asymptotic behavior of the regression spline estimator in the framework of marginal semiparametric model. Similarly to Zhu, Fung and He (2008), we give explicit expression for the asymptotic bias of regression spline estimator for nonparametric function f. Our results also show that the asymptotic bias of the regression spline estimator does not depend on the working covariance matrix, which distinguishes the regression splines from the smoothing splines and the seemingly unrelated kernel. To understand the local bias result of the regression spline estimator, we show that the regression spline estimator can be obtained iteratively by applying the standard weighted least squares regression spline estimator to pseudo-observations. At each iteration, the bias of the estimator is unchanged and only the variance is updated.展开更多
This paper studies local M-estimation of the nonparametric components of additive models. A two-stage local M-estimation procedure is proposed for estimating the additive components and their derivatives. Under very m...This paper studies local M-estimation of the nonparametric components of additive models. A two-stage local M-estimation procedure is proposed for estimating the additive components and their derivatives. Under very mild conditions, the proposed estimators of each additive component and its derivative are jointly asymptotically normal and share the same asymptotic distributions as they would be if the other components were known. The established asymptotic results also hold for two particular local M-estimations: the local least squares and least absolute deviation estimations. However, for general two-stage local M-estimation with continuous and nonlinear ψ-functions, its implementation is time-consuming. To reduce the computational burden, one-step approximations to the two-stage local M-estimators are developed. The one-step estimators are shown to achieve the same efficiency as the fully iterative two-stage local M-estimators, which makes the two-stage local M-estimation more feasible in practice. The proposed estimators inherit the advantages and at the same time overcome the disadvantages of the local least-squares based smoothers. In addition, the practical implementation of the proposed estimation is considered in details. Simulations demonstrate the merits of the two-stage local M-estimation, and a real example illustrates the performance of the methodology.展开更多
Semiparametric reproductive dispersion nonlinear model (SRDNM) is an extension of nonlinear reproductive dispersion models and semiparametric nonlinear regression models, and includes semiparametric nonlinear model an...Semiparametric reproductive dispersion nonlinear model (SRDNM) is an extension of nonlinear reproductive dispersion models and semiparametric nonlinear regression models, and includes semiparametric nonlinear model and semiparametric generalized linear model as its special cases. Based on the local kernel estimate of nonparametric component, profile-kernel and backfitting estimators of parameters of interest are proposed in SRDNM, and theoretical comparison of both estimators is also investigated in this paper. Under some regularity conditions, strong consistency and asymptotic normality of two estimators are proved. It is shown that the backfitting method produces a larger asymptotic variance than that for the profile-kernel method. A simulation study and a real example are used to illustrate the proposed methodologies.展开更多
In this paper, we propose a new estimate for dimension reduction, called the weighted variance estimate (WVE), which includes Sliced Average Variance Estimate (SAVE) as a special case. Bootstrap method is used to sele...In this paper, we propose a new estimate for dimension reduction, called the weighted variance estimate (WVE), which includes Sliced Average Variance Estimate (SAVE) as a special case. Bootstrap method is used to select the best estimate from the WVE and to estimate the structure dimension. And this selected best estimate usually performs better than the existing methods such as Sliced Inverse Regression (SIR), SAVE, etc. Many methods such as SIR, SAVE, etc. usually put the same weight on each observation to estimate central subspace (CS). By introducing a weight function, WVE puts different weights on different observations according to distance of observations from CS. The weight function makes WVE have very good performance in general and complicated situations, for example, the distribution of regressor deviating severely from elliptical distribution which is the base of many methods, such as SIR, etc. And compared with many existing methods, WVE is insensitive to the distribution of the regressor. The consistency of the WVE is established. Simulations to compare the performances of WVE with other existing methods confirm the advantage of WVE.展开更多
基金supported by National Natural Science Foundation of China (Grant No. 10671089)China Postdoctoral Science Foundation and Jiangsu Planned Projects for Postdoctoral Research Funds
文摘This paper considers a nonparametric varying coefficient regression with spatial data. A global smoothing procedure is developed by using B-spline function approximations for estimating the coefficient functions. Under mild regularity assumptions,the global convergence rates of the B-spline estimators of the unknown coefficient functions are established. Asymptotic results show that our B-spline estimators achieve the optimal convergence rate. The asymptotic distributions of the B-spline estimators of the unknown coefficient functions are also derived. A procedure for selecting smoothing parameters is given. Finite sample properties of our procedures are studied through Monte Carlo simulations. Application of the proposed method is demonstrated by examining voting behaviors across US counties in the 1980 presidential election.
基金supported by National Natural Science Foundation of China (Grant Nos.10671038,10801039)Youth Science Foundation of Fudan University (Grant No.08FQ29)Shanghai Leading Academic Discipline Project (Grant No.B118)
文摘In this paper, we study the local asymptotic behavior of the regression spline estimator in the framework of marginal semiparametric model. Similarly to Zhu, Fung and He (2008), we give explicit expression for the asymptotic bias of regression spline estimator for nonparametric function f. Our results also show that the asymptotic bias of the regression spline estimator does not depend on the working covariance matrix, which distinguishes the regression splines from the smoothing splines and the seemingly unrelated kernel. To understand the local bias result of the regression spline estimator, we show that the regression spline estimator can be obtained iteratively by applying the standard weighted least squares regression spline estimator to pseudo-observations. At each iteration, the bias of the estimator is unchanged and only the variance is updated.
基金supported by the National Natural Science Foundation of China (Grant No. 10471006)
文摘This paper studies local M-estimation of the nonparametric components of additive models. A two-stage local M-estimation procedure is proposed for estimating the additive components and their derivatives. Under very mild conditions, the proposed estimators of each additive component and its derivative are jointly asymptotically normal and share the same asymptotic distributions as they would be if the other components were known. The established asymptotic results also hold for two particular local M-estimations: the local least squares and least absolute deviation estimations. However, for general two-stage local M-estimation with continuous and nonlinear ψ-functions, its implementation is time-consuming. To reduce the computational burden, one-step approximations to the two-stage local M-estimators are developed. The one-step estimators are shown to achieve the same efficiency as the fully iterative two-stage local M-estimators, which makes the two-stage local M-estimation more feasible in practice. The proposed estimators inherit the advantages and at the same time overcome the disadvantages of the local least-squares based smoothers. In addition, the practical implementation of the proposed estimation is considered in details. Simulations demonstrate the merits of the two-stage local M-estimation, and a real example illustrates the performance of the methodology.
基金supported by National Natural Science Foundation of China (Grant Nos. 10561008, 10761011)Natural Science Foundation of Department of Education of Zhejiang Province (Grant No. Y200805073)+1 种基金PhD Special Scientific Research Foundation of Chinese University (Grant No. 20060673002)Program for New Century Excellent Talents in University (Grant No. NCET-07-0737)
文摘Semiparametric reproductive dispersion nonlinear model (SRDNM) is an extension of nonlinear reproductive dispersion models and semiparametric nonlinear regression models, and includes semiparametric nonlinear model and semiparametric generalized linear model as its special cases. Based on the local kernel estimate of nonparametric component, profile-kernel and backfitting estimators of parameters of interest are proposed in SRDNM, and theoretical comparison of both estimators is also investigated in this paper. Under some regularity conditions, strong consistency and asymptotic normality of two estimators are proved. It is shown that the backfitting method produces a larger asymptotic variance than that for the profile-kernel method. A simulation study and a real example are used to illustrate the proposed methodologies.
基金supported by National Natural Science Foundation of China (Grant No. 10771015)
文摘In this paper, we propose a new estimate for dimension reduction, called the weighted variance estimate (WVE), which includes Sliced Average Variance Estimate (SAVE) as a special case. Bootstrap method is used to select the best estimate from the WVE and to estimate the structure dimension. And this selected best estimate usually performs better than the existing methods such as Sliced Inverse Regression (SIR), SAVE, etc. Many methods such as SIR, SAVE, etc. usually put the same weight on each observation to estimate central subspace (CS). By introducing a weight function, WVE puts different weights on different observations according to distance of observations from CS. The weight function makes WVE have very good performance in general and complicated situations, for example, the distribution of regressor deviating severely from elliptical distribution which is the base of many methods, such as SIR, etc. And compared with many existing methods, WVE is insensitive to the distribution of the regressor. The consistency of the WVE is established. Simulations to compare the performances of WVE with other existing methods confirm the advantage of WVE.