The effect of alloy composition and heat treatment, including natural ageing and pre-ageing, on the mechanical performance of eight 6xxx alloys designed with systematically varying Si, Mg and Cu contents was studied. ...The effect of alloy composition and heat treatment, including natural ageing and pre-ageing, on the mechanical performance of eight 6xxx alloys designed with systematically varying Si, Mg and Cu contents was studied. The results show that not only the alloy composition and heat treatment before forming influence the formability, but also they have an effect on the paint bake response of the alloys. Increasing the alloy Si content, decreasing Mg/Si ratio and adding 0.3% Cu (mass fraction) were generally found to improve the tensile ductility and formability of the alloys studied, while pre-ageing was found to decrease these properties. A full property profile of these alloys in terms of strength, tensile ductility, work hardening, strain rate sensitivity, forming limit and paint bake response was presented.展开更多
Microstructure evolution during the homogenization heat treatment of an Al?Mg?Si?Fe?Mn(AA6xxx)alloy wasinvestigated using a combination of modelling and experimental studies.The model is based on the CALPHAD-coupledho...Microstructure evolution during the homogenization heat treatment of an Al?Mg?Si?Fe?Mn(AA6xxx)alloy wasinvestigated using a combination of modelling and experimental studies.The model is based on the CALPHAD-coupledhomogenization heat treatment model originally developed for AA3xxx alloys(i.e.,Al?Mn?Fe?Si).In this work,the model wasadapted to the more complex AA6xxx system(Al?Mg?Si?Mn?Fe)to predict the evolution of critical microstructural features suchas the spatial distribution of solute,the type and fraction of constituent particles and dispersoid number density and size distribution.Experiments were also conducted using three direct chill(DC)cast AA6xxx alloys with different Mn levels subjected to varioushomogenization treatments.The resulting microstructures were characterized using a range of techniques including scanning electronmicroscopy,electron microprobe analysis(EPMA),XRD,and electrical resistivity measurements.The model predictions werecompared with the experimental measurements,and reasonable agreement was found.展开更多
文摘The effect of alloy composition and heat treatment, including natural ageing and pre-ageing, on the mechanical performance of eight 6xxx alloys designed with systematically varying Si, Mg and Cu contents was studied. The results show that not only the alloy composition and heat treatment before forming influence the formability, but also they have an effect on the paint bake response of the alloys. Increasing the alloy Si content, decreasing Mg/Si ratio and adding 0.3% Cu (mass fraction) were generally found to improve the tensile ductility and formability of the alloys studied, while pre-ageing was found to decrease these properties. A full property profile of these alloys in terms of strength, tensile ductility, work hardening, strain rate sensitivity, forming limit and paint bake response was presented.
基金support from Rio Tinto AluminiumNSERC are gratefully acknowledged
文摘Microstructure evolution during the homogenization heat treatment of an Al?Mg?Si?Fe?Mn(AA6xxx)alloy wasinvestigated using a combination of modelling and experimental studies.The model is based on the CALPHAD-coupledhomogenization heat treatment model originally developed for AA3xxx alloys(i.e.,Al?Mn?Fe?Si).In this work,the model wasadapted to the more complex AA6xxx system(Al?Mg?Si?Mn?Fe)to predict the evolution of critical microstructural features suchas the spatial distribution of solute,the type and fraction of constituent particles and dispersoid number density and size distribution.Experiments were also conducted using three direct chill(DC)cast AA6xxx alloys with different Mn levels subjected to varioushomogenization treatments.The resulting microstructures were characterized using a range of techniques including scanning electronmicroscopy,electron microprobe analysis(EPMA),XRD,and electrical resistivity measurements.The model predictions werecompared with the experimental measurements,and reasonable agreement was found.