A method is presented to express the electrical parameters of the vacuum vessel in this paper. According to the results of numerical computation and the distribution of the eddy currents, the mutual inductance can be ...A method is presented to express the electrical parameters of the vacuum vessel in this paper. According to the results of numerical computation and the distribution of the eddy currents, the mutual inductance can be given by calculating the flux produced by the toroidal eddy currents. The time constants of the vacuum vessel of HT-7U tokamak are derived from the decay characteristics of the eddy currents.展开更多
The February 12, 2014, Ms7. 3, earthquake in Yutian, Xinjiang, China, occurred as a result of shallow strike-slip faulting in the tectonicaUy complex region of the northern Tibetan Plateau, with a depth of 17kin. This...The February 12, 2014, Ms7. 3, earthquake in Yutian, Xinjiang, China, occurred as a result of shallow strike-slip faulting in the tectonicaUy complex region of the northern Tibetan Plateau, with a depth of 17kin. This earthquake occurred several hundred kilometers north of the convergent India-Eurasia plate boundary. The epicenter location of the Yutian earthquake, 36. 1° N, 82. 5° E, is ll0km north of Yutian County, Hotan Prefecture. A large number of aftershocks from ML2. 0 to ML3. 0 occurred until 12:00 o'clock, February 23, 2014 and the largest aftershock, Ms5. 7, occurred at 17:24 μm. , February 12, 2014. The b and h value of Yutian sequence are 0.70 and 1.29, respectively. The waiting time method reveals that the strong aftershocks above ML 4. 5 comply with a linear relationship, which is consistent with the characteristics of a mainshock-aftershock sequence. Furthermore, we calculate the source parameters and analyze the rupture process based on the empirical relationships for the Yutian earthquake, and the results indicate a frictional undershoot behavior in the dynamic source process of the Yutian earthquake, which is also in agreement with the lower and similar b values compared with the 2008 Ms 7.3 Yutian earthquake and the 2012 Ms 6. 2 Yutian earthquake.展开更多
文摘A method is presented to express the electrical parameters of the vacuum vessel in this paper. According to the results of numerical computation and the distribution of the eddy currents, the mutual inductance can be given by calculating the flux produced by the toroidal eddy currents. The time constants of the vacuum vessel of HT-7U tokamak are derived from the decay characteristics of the eddy currents.
基金supported by the National Natural Science Foundation of China ( 41404045)the Earthquake Tracing Task of China Earthquake Administration(2014020412)
文摘The February 12, 2014, Ms7. 3, earthquake in Yutian, Xinjiang, China, occurred as a result of shallow strike-slip faulting in the tectonicaUy complex region of the northern Tibetan Plateau, with a depth of 17kin. This earthquake occurred several hundred kilometers north of the convergent India-Eurasia plate boundary. The epicenter location of the Yutian earthquake, 36. 1° N, 82. 5° E, is ll0km north of Yutian County, Hotan Prefecture. A large number of aftershocks from ML2. 0 to ML3. 0 occurred until 12:00 o'clock, February 23, 2014 and the largest aftershock, Ms5. 7, occurred at 17:24 μm. , February 12, 2014. The b and h value of Yutian sequence are 0.70 and 1.29, respectively. The waiting time method reveals that the strong aftershocks above ML 4. 5 comply with a linear relationship, which is consistent with the characteristics of a mainshock-aftershock sequence. Furthermore, we calculate the source parameters and analyze the rupture process based on the empirical relationships for the Yutian earthquake, and the results indicate a frictional undershoot behavior in the dynamic source process of the Yutian earthquake, which is also in agreement with the lower and similar b values compared with the 2008 Ms 7.3 Yutian earthquake and the 2012 Ms 6. 2 Yutian earthquake.