In this paper, the composition of HT-7 LHCD system along with its protection systems is introduced. It is very important for us to run the LHCD system safely and efficiently.
This paper proposes a quench protection project of HT-7U toroidal superconducting tokamak through a forced commutation analysis of DC circuit breaker (DCCB) paralleling fuse. Based on the requirement of quench protect...This paper proposes a quench protection project of HT-7U toroidal superconducting tokamak through a forced commutation analysis of DC circuit breaker (DCCB) paralleling fuse. Based on the requirement of quench protection, main parameters are selected. Experimental results demonstrate the validity of this proposed project.展开更多
This session of the Forum has the theme, “The Chinese Dream: New Progress in the Cause of Human Rights in China.” This theme concentrates on such important subtopics as “The Chinese Dream and Human Rights” ,
We developed an H5/H7 trivalent inactivated vaccine by using Re-11, Re-12, and H7-Re2 vaccine seed viruses, which were generated by reverse genetics and derived their HA genes from A/duck/Guizhou/S4184/2017(H5N6) (DK/...We developed an H5/H7 trivalent inactivated vaccine by using Re-11, Re-12, and H7-Re2 vaccine seed viruses, which were generated by reverse genetics and derived their HA genes from A/duck/Guizhou/S4184/2017(H5N6) (DK/GZ/S4184/17) (a clade 2.3.4.4d virus), A/chicken/Liaoning/SD007/2017(H5N1) (CK/LN/SD007/17) (a clade 2.3.2.1d virus), and A/chicken/ Guangxi/SD098/2017(H7N9) (CK/GX/SD098/17), respectively. The protective efficacy of this novel vaccine and that of the recently used H5/H7 bivalent inactivated vaccine against different H5 and H7N9 viruses was evaluated in chickens. We found that the H5/H7 bivalent vaccine provided solid protection against the H7N9 virus CK/GX/SD098/17, but only 50–60% protection against different H5 viruses. In contrast, the novel H5/H7 trivalent vaccine provided complete protection against the H5 and H7 viruses tested. Our study underscores the importance of timely updating of vaccines for avian influenza control.展开更多
Some H5 viruses isolated in poultry or wild birds between 2020 and 2021 were found to be antigenically different from the vaccine strains(H5-Re11 and H5-Re12) used in China. In this study, we generated three new recom...Some H5 viruses isolated in poultry or wild birds between 2020 and 2021 were found to be antigenically different from the vaccine strains(H5-Re11 and H5-Re12) used in China. In this study, we generated three new recombinant vaccine seed viruses by using reverse genetics and used them for vaccine production. The vaccine strain H5-Re13 contains the hemagglutinin(HA) and neuraminidase(NA) genes of an H5 N6 virus that bears the clade 2.3.4.4 h HA gene, H5-Re14 contains the HA and NA genes of an H5 N8 virus that bears the clade 2.3.4.4 b HA gene, and H7-Re4 contains the HA and NA genes of H7 N9 virus detected in 2021. We evaluated the protective efficacy of the novel H5/H7 trivalent inactivated vaccine in chickens, ducks, and geese. The inactivated vaccine was immunogenic and induced substantial antibody responses in the birds tested. Three weeks after vaccination, chickens were challenged with five different viruses detected in 2020 and 2021: three viruses(an H5 N1 virus, an H5 N6 virus, and an H5 N8 virus) bearing the clade 2.3.4.4 b HA gene, an H5 N6 virus bearing the clade 2.3.4.4 h HA gene, and an H7 N9 virus. All of the control birds shed high titers of virus and died within 4 days post-challenge, whereas the vaccinated chickens were completely protected from these viruses. Similar protective efficacy against H5 viruses bearing the clade 2.3.4.4 h or 2.3.4.4 b HA gene was observed in ducks and geese. Our study indicates that the newly updated H5/H7 vaccine can provide solid protection against the H5 and H7 N9 viruses that are currently circulating in nature.展开更多
Background: One of potentially dangerous problems for a human organism is the new strain of a virus of bird flu-A/H7N9. As it is regular mutation of bird flu virus, it obvious, that of antibacterial preparations is no...Background: One of potentially dangerous problems for a human organism is the new strain of a virus of bird flu-A/H7N9. As it is regular mutation of bird flu virus, it obvious, that of antibacterial preparations is not efficient. Efficiency decreases when the number of agents with multiple stability to antimicrobic remedy vastly increases, the part of associate infections enlarges, and aggression of opportunistic pathogenic flora rises. This reduces the role of the preparations in prevention of epidemics. Therefore, the optimization of only etiotropic therapies does not fully solve the problem. In this connection natural preparations seem extremely promising which strengthen the functional condition of immune system and, thereby, activate protective forces of macroorganism. Objectives: One of such preparations is BAE Synergy Liquid, a natural mineral water which was underwent subtle energetic changes at the natural energetic deposit. Design: An estimation of protective efficiency of naturally modified mineral BAE SL water was performed on white outbred mice-males in models of H7N9 virus. The animals were monitored during 16 days after infection, and survived and fallen mice were counted daily. Results: The results revealed significant effect of the investigated preparation as possible prophylactic care and medical remedy to the mentioned virus. This means that one can be considered as potential effective remedy for human. Conclusions: As significant effect of the immune system resistance was revealed, the experimental model with studied naturally modified mineral water is potentially generalizable.展开更多
H7N9 subtype avian influenza virus poses a great challenge for poultry industry.Newcastle disease virus(NDV)-vectored H7N9 avian influenza vaccines(NDV_(vec)H7N9)are effective in disease control because they are prote...H7N9 subtype avian influenza virus poses a great challenge for poultry industry.Newcastle disease virus(NDV)-vectored H7N9 avian influenza vaccines(NDV_(vec)H7N9)are effective in disease control because they are protective and allow mass administration.Of note,these vaccines elicit undetectable H7N9-specific hemagglutination-inhibition(HI)but high IgG antibodies in chickens.However,the molecular basis and protective mechanism underlying this particular antibody immunity remain unclear.Herein,immunization with an NDV_(vec)H7N9 induced low anti-H7N9 HI and virus neutralization titers but high levels of hemagglutinin(HA)-binding IgG antibodies in chickens.Three residues(S150,G151 and S152)in HA of H7N9 virus were identified as the dominant epitopes recognized by the NDV_(vec)H7N9 immune serum.Passively transferred NDV_(vec)H7N9 immune serum conferred complete protection against H7N9 virus infection in chickens.The NDV_(vec)H7N9 immune serum can mediate a potent lysis of HA-expressing and H7N9 virus-infected cells and significantly suppress H7N9 virus infectivity.These activities of the serum were significantly impaired after heat-inactivation or treatment with complement inhibitor,suggesting the engagement of the complement system.Moreover,mutations in the 150-SGS-152 sites in HA resulted in significant reductions in cell lysis and virus neutralization mediated by the NDV_(vec)H7N9 immune serum,indicating the requirement of antibody-antigen binding for complement activity.Therefore,antibodies induced by the NDV_(vec)H7N9 can activate antibody-dependent complement-mediated lysis of H7N9 virus-infected cells and complement-mediated neutralization of H7N9 virus.Our findings unveiled a novel role of the complement in protection conferred by the NDV_(vec)H7N9,highlighting a potential benefit of engaging the complement system in H7N9 vaccine design.展开更多
Based on the analysis of a specific relay model and an HVAC (high voltage alternating current) cable system, a detailed approach to EMTDC/PSCAD modelling of protective relays is presented. Such approach allows to cr...Based on the analysis of a specific relay model and an HVAC (high voltage alternating current) cable system, a detailed approach to EMTDC/PSCAD modelling of protective relays is presented. Such approach allows to create complex and accurate relay models derived from the original algorithms. Relay models can be applied with various systems, allowing to obtain the most optimal configuration of the protective relaying. The present paper describes modelling methodology on the basis of Siemens SIPROTEC 4 7SD522/610. Relay model was verified experimentally with its real equivalent by both EMTP-simulated and real world generated current signals connected to the relay.展开更多
文摘In this paper, the composition of HT-7 LHCD system along with its protection systems is introduced. It is very important for us to run the LHCD system safely and efficiently.
基金This work was supported by the National Meg-science Engneering Project of the Chinese Government.
文摘This paper proposes a quench protection project of HT-7U toroidal superconducting tokamak through a forced commutation analysis of DC circuit breaker (DCCB) paralleling fuse. Based on the requirement of quench protection, main parameters are selected. Experimental results demonstrate the validity of this proposed project.
文摘This session of the Forum has the theme, “The Chinese Dream: New Progress in the Cause of Human Rights in China.” This theme concentrates on such important subtopics as “The Chinese Dream and Human Rights” ,
基金This work was supported by the National Key R&D Program of China(2016YFD0501602,2017YFD0500701,and 2016YFEO203200)the National Natural Science Foundation of China(3167131307)+1 种基金the China Agriculture Research System(CARS-41-G12)and Central Publicinterest Scientific Institution Basal Research Fund(1610302017001).
文摘We developed an H5/H7 trivalent inactivated vaccine by using Re-11, Re-12, and H7-Re2 vaccine seed viruses, which were generated by reverse genetics and derived their HA genes from A/duck/Guizhou/S4184/2017(H5N6) (DK/GZ/S4184/17) (a clade 2.3.4.4d virus), A/chicken/Liaoning/SD007/2017(H5N1) (CK/LN/SD007/17) (a clade 2.3.2.1d virus), and A/chicken/ Guangxi/SD098/2017(H7N9) (CK/GX/SD098/17), respectively. The protective efficacy of this novel vaccine and that of the recently used H5/H7 bivalent inactivated vaccine against different H5 and H7N9 viruses was evaluated in chickens. We found that the H5/H7 bivalent vaccine provided solid protection against the H7N9 virus CK/GX/SD098/17, but only 50–60% protection against different H5 viruses. In contrast, the novel H5/H7 trivalent vaccine provided complete protection against the H5 and H7 viruses tested. Our study underscores the importance of timely updating of vaccines for avian influenza control.
基金supported by the National Key Research and Development Program of China(2021YFD1800200)the Laboratory for Lingnan Modern Agriculture Project(NT2021007)the China Agriculture Research System of the MOF and MARA(CARS-41-G12)。
文摘Some H5 viruses isolated in poultry or wild birds between 2020 and 2021 were found to be antigenically different from the vaccine strains(H5-Re11 and H5-Re12) used in China. In this study, we generated three new recombinant vaccine seed viruses by using reverse genetics and used them for vaccine production. The vaccine strain H5-Re13 contains the hemagglutinin(HA) and neuraminidase(NA) genes of an H5 N6 virus that bears the clade 2.3.4.4 h HA gene, H5-Re14 contains the HA and NA genes of an H5 N8 virus that bears the clade 2.3.4.4 b HA gene, and H7-Re4 contains the HA and NA genes of H7 N9 virus detected in 2021. We evaluated the protective efficacy of the novel H5/H7 trivalent inactivated vaccine in chickens, ducks, and geese. The inactivated vaccine was immunogenic and induced substantial antibody responses in the birds tested. Three weeks after vaccination, chickens were challenged with five different viruses detected in 2020 and 2021: three viruses(an H5 N1 virus, an H5 N6 virus, and an H5 N8 virus) bearing the clade 2.3.4.4 b HA gene, an H5 N6 virus bearing the clade 2.3.4.4 h HA gene, and an H7 N9 virus. All of the control birds shed high titers of virus and died within 4 days post-challenge, whereas the vaccinated chickens were completely protected from these viruses. Similar protective efficacy against H5 viruses bearing the clade 2.3.4.4 h or 2.3.4.4 b HA gene was observed in ducks and geese. Our study indicates that the newly updated H5/H7 vaccine can provide solid protection against the H5 and H7 N9 viruses that are currently circulating in nature.
文摘Background: One of potentially dangerous problems for a human organism is the new strain of a virus of bird flu-A/H7N9. As it is regular mutation of bird flu virus, it obvious, that of antibacterial preparations is not efficient. Efficiency decreases when the number of agents with multiple stability to antimicrobic remedy vastly increases, the part of associate infections enlarges, and aggression of opportunistic pathogenic flora rises. This reduces the role of the preparations in prevention of epidemics. Therefore, the optimization of only etiotropic therapies does not fully solve the problem. In this connection natural preparations seem extremely promising which strengthen the functional condition of immune system and, thereby, activate protective forces of macroorganism. Objectives: One of such preparations is BAE Synergy Liquid, a natural mineral water which was underwent subtle energetic changes at the natural energetic deposit. Design: An estimation of protective efficiency of naturally modified mineral BAE SL water was performed on white outbred mice-males in models of H7N9 virus. The animals were monitored during 16 days after infection, and survived and fallen mice were counted daily. Results: The results revealed significant effect of the investigated preparation as possible prophylactic care and medical remedy to the mentioned virus. This means that one can be considered as potential effective remedy for human. Conclusions: As significant effect of the immune system resistance was revealed, the experimental model with studied naturally modified mineral water is potentially generalizable.
基金supported by the earmarked fund for China Agriculture Research System(CARS-40)the Key Research and Development Project of Yangzhou(Modern Agriculture),China(YZ2022052)the‘‘High-end Talent Support Program’’of Yangzhou University,China。
文摘H7N9 subtype avian influenza virus poses a great challenge for poultry industry.Newcastle disease virus(NDV)-vectored H7N9 avian influenza vaccines(NDV_(vec)H7N9)are effective in disease control because they are protective and allow mass administration.Of note,these vaccines elicit undetectable H7N9-specific hemagglutination-inhibition(HI)but high IgG antibodies in chickens.However,the molecular basis and protective mechanism underlying this particular antibody immunity remain unclear.Herein,immunization with an NDV_(vec)H7N9 induced low anti-H7N9 HI and virus neutralization titers but high levels of hemagglutinin(HA)-binding IgG antibodies in chickens.Three residues(S150,G151 and S152)in HA of H7N9 virus were identified as the dominant epitopes recognized by the NDV_(vec)H7N9 immune serum.Passively transferred NDV_(vec)H7N9 immune serum conferred complete protection against H7N9 virus infection in chickens.The NDV_(vec)H7N9 immune serum can mediate a potent lysis of HA-expressing and H7N9 virus-infected cells and significantly suppress H7N9 virus infectivity.These activities of the serum were significantly impaired after heat-inactivation or treatment with complement inhibitor,suggesting the engagement of the complement system.Moreover,mutations in the 150-SGS-152 sites in HA resulted in significant reductions in cell lysis and virus neutralization mediated by the NDV_(vec)H7N9 immune serum,indicating the requirement of antibody-antigen binding for complement activity.Therefore,antibodies induced by the NDV_(vec)H7N9 can activate antibody-dependent complement-mediated lysis of H7N9 virus-infected cells and complement-mediated neutralization of H7N9 virus.Our findings unveiled a novel role of the complement in protection conferred by the NDV_(vec)H7N9,highlighting a potential benefit of engaging the complement system in H7N9 vaccine design.
文摘Based on the analysis of a specific relay model and an HVAC (high voltage alternating current) cable system, a detailed approach to EMTDC/PSCAD modelling of protective relays is presented. Such approach allows to create complex and accurate relay models derived from the original algorithms. Relay models can be applied with various systems, allowing to obtain the most optimal configuration of the protective relaying. The present paper describes modelling methodology on the basis of Siemens SIPROTEC 4 7SD522/610. Relay model was verified experimentally with its real equivalent by both EMTP-simulated and real world generated current signals connected to the relay.