期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Anisotropy of Thermal-expansion for β-Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine: Quantum Chemistry Calculation and Molecular Dynamics Simulation
1
作者 钱文 张朝阳 +3 位作者 舒远杰 熊鹰 宗和厚 张伟斌 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2014年第1期57-62,I0003,共7页
Molecular dynamics simulations on octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) at 303-383 K and atmospheric pressure are carried out under NPT ensemble and COMPASS force field, the equilibrium structures a... Molecular dynamics simulations on octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) at 303-383 K and atmospheric pressure are carried out under NPT ensemble and COMPASS force field, the equilibrium structures at elevated temperatures were obtained and showed that the stacking style of molecules don't change. The coefficient of thermal expansion (CTE) values were calculated by linear fitting method. The results show that the CTE values are close to the experimental results and show anisotropy. The total energies of HMX cells with separately increasing expansion rates (100%-105%) along each crystallographic axis was calculated by periodic density functional theory method, the results of the energy change rates are anisotropic, and the correlation equations of energy change-CTE values are established. Thus the hypostasis of the anisotropy of HMX crystal's thermal expansion, the determinate molecular packing style, is elucidated. 展开更多
关键词 Octahydro-1 3 5 7-tetranitro-1 3 5 7-tetrazocine Molecular dynamics simula-tion Thermal expansion ANISOTROPY Density functional theory
下载PDF
Combustion Synthesis of La0.8Sr0.2MnO3 and Its Effect on HMX Thermal Decomposition 被引量:3
2
作者 王艳 龚磊 +1 位作者 李延斌 卫芝贤 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2010年第3期397-401,共5页
Perovskite-type La0.8Sr0.2MnO3 was prepared by stearic acid gel combustion method.The obtained powders were characterized by X-ray diffraction(XRD),Fourier transform infrared spectroscopy(FT-IR),scaning electron micro... Perovskite-type La0.8Sr0.2MnO3 was prepared by stearic acid gel combustion method.The obtained powders were characterized by X-ray diffraction(XRD),Fourier transform infrared spectroscopy(FT-IR),scaning electron micrograph(SEM)and X-ray photoelectron spectroscopy(XPS)techniques.The catalytic activity of La0.8Sr0.2MnO3 was investigated on thermal decomposition of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX)by thermal gravity-differential scanning calorimetry(TG-DSC)techniques.The experimental results show that La0.8Sr0.2MnO3 is an effective catalyst for HMX thermal decomposition.The surface-adsorbed species such as H2O,OH - and adsorbed oxygen(Oad)could result in an advance in the onset temperature of HMX thermal decomposition.The mixture system of Mn 3+ and Mn 4+ ions and lattice oxygen could play key roles for the increase of the decomposition heat of HMX because these exothermic reactions could be catalyzed by La0.8Sr0.2MnO3 between CO and NOx(from the thermal decomposition of HMX)and the oxidation reaction of CO.According to the previous researches and our results,perovskite-type La0.8Sr0.2MnO3 may be used as a novel catalyst or modifier for nitrate ester plasticized polyether(NEPE)propellant. 展开更多
关键词 stearic acid gel combusiion synthesis perovskite-type La0.8Sr0.2MnO3 octahydro-1 3 5 7-tetranitro- 1 3 5 7-tetrazocine thermal decomposition
下载PDF
Crystallographic orientation dependence on nanoscale friction behavior of energetic β-HMX crystal 被引量:3
3
作者 Ying YIN Hongtao LI +4 位作者 Zhihong CAO Binghong LI Qingshan LI Hongtu HE Jiaxin YU 《Friction》 SCIE EI CAS CSCD 2023年第12期2264-2277,共14页
Tribology behaviors of energetic crystals play critical roles in the friction-induced hotspot in highenergy explosive,however,the binder and energetic crystals are not distinguished properly in previous investigations... Tribology behaviors of energetic crystals play critical roles in the friction-induced hotspot in highenergy explosive,however,the binder and energetic crystals are not distinguished properly in previous investigations.In this study,for the first time,the nanoscale friction ofβ-octahydro-1,3,5,7-tetranitro1,3,5,7-tetrazocine(β-HMX)crystal is studied with nanoscratch tests under the ramping load mode.The results show that the nanoscale friction and wear ofβ-HMX crystal,as a typical energetic material,is highly depended on the applied load.The friction coefficient ofβ-HMX crystal is initially high when no discernible wear is observed,and then it decreases to a stable value which varies from~0.2 to~0.7,depending on the applied load,scratch direction,and crystal planes.Theβ-HMX(011)surfaces show weakly friction and wear anisotropy behavior;in contrast,theβ-HMX(110)surfaces show strongly friction and wear anisotropy behavior where the friction coefficient,critical load for the elastic–plastic deformation transition and plastic–cracking deformation transition,and deformation index at higher normal load are highly depended on the scratch directions.Further analyses indicate the slip system and direction ofβ-HMX surfaces play key roles in determining the nanoscale friction and wear ofβ-HMX surfaces.The obtained results can provide deeper insight into the friction and wear of energetic crystal materials. 展开更多
关键词 β-octahydro-1 3 5 7-tetranitro-1 3 5 7-tetrazocine(β-hmx) NANOSCRATCH friction wear plastic deformation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部