期刊文献+
共找到45篇文章
< 1 2 3 >
每页显示 20 50 100
Characterization and Analysis of Inconel 718 Alloy Ground at Different Speeds
1
作者 Hao Liu Huili Han +2 位作者 Qinghong Jiang Minglin He Bi Zhang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第2期137-149,共13页
Inconel 718(IN718)alloy is widely applied to fabricate high temperature resistant or corrosion resistant parts due to its excellent mechanical performance.However,the machining of IN718 alloy is difficult as it may ca... Inconel 718(IN718)alloy is widely applied to fabricate high temperature resistant or corrosion resistant parts due to its excellent mechanical performance.However,the machining of IN718 alloy is difficult as it may cause serious tool wear and poor surface quality(SQ)of the workpiece.In this work,grinding experiments on IN718 alloy at different speeds were conducted by using a CBN grinding wheel.The relationship between grinding speed,SQ and subsurface damage(SSD)was well studied.With increasing grinding speed,surface roughness decreased,and SQ was greatly improved.Meanwhile,the microhardness of the grinding surface declined as the grinding speed increased.The SSD depth was almost unchanged when the grinding speed was lower than 15 m/s,then it decreased with higher grinding speeds.It was attributed to the mechanical-thermal synergistic effect in the grinding process.The results indicated that increasing grinding speed can effectively improve the SQ and reduce the SSD of IN718 alloy.The conclusion in the work may also provide insight into processing other hard-to-machining materials. 展开更多
关键词 Surface integrity Grinding speed IN718 alloy Precision machining CBN grinding wheel
下载PDF
Effect of two-step solid solution on microstructure andδphase precipitation of Inconel 718 alloy
2
作者 Enyu Liu Qingshuang Ma +5 位作者 Xintong Li Aoxue Gao Jing Bai Liming Yu Qiuzhi Gao Huijun Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第10期2199-2207,共9页
Inconel 718 is the most popular nickel-based superalloy and is extensively used in aerospace,automotive,and energy indus-tries owing to its extraordinary thermomechanical properties.The effects of different two-step s... Inconel 718 is the most popular nickel-based superalloy and is extensively used in aerospace,automotive,and energy indus-tries owing to its extraordinary thermomechanical properties.The effects of different two-step solid solution treatments on microstructure andδphase precipitation of Inconel 718 alloy were studied,and the transformation mechanism fromγ″metastable phase toδphase was clarified.The precipitates were statistically analyzed by X-ray diffractometry.The results show that theδphase content firstly increased,and then decreased with the temperature of the second-step solid solution.The changes in microstructure andδphase were studied by scanning electron microscopy and transmission electron microscopy.An intragranularδphase formed in Inconel 718 alloy at the second-[100]_(δ)[011]γ step solid solution temperature of 925℃,and its orientation relationship withγmatrix was determined as//and(010)_(δ)//(111)γ.Furthermore,the Vickers hardness of different heat treatment samples was measured,and the sample treated by second-step solid solution at 1010℃ reached the maximum hardness of HV 446.84. 展开更多
关键词 Inconel 718 alloy two-step solid solution treatment δphase γ″-δtransformation
下载PDF
Phase-field simulation of lack-of-fusion defect and grain growth during laser powder bed fusion of Inconel 718 被引量:3
3
作者 Miaomiao Chen Renhai Shi +4 位作者 Zhuangzhuang Liu Yinghui Li Qiang Du Yuhong Zhao Jianxin Xie 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第11期2224-2235,共12页
The anisotropy of the structure and properties caused by the strong epitaxial growth of grains during laser powder bed fusion(L-PBF)significantly affects the mechanical performance of Inconel 718 alloy components such... The anisotropy of the structure and properties caused by the strong epitaxial growth of grains during laser powder bed fusion(L-PBF)significantly affects the mechanical performance of Inconel 718 alloy components such as turbine disks.The defects(lack-of-fusion Lo F)in components processed via L-PBF are detrimental to the strength of the alloy.The purpose of this study is to investigate the effect of laser scanning parameters on the epitaxial grain growth and LoF formation in order to obtain the parameter space in which the microstructure is refined and LoF defect is suppressed.The temperature field of the molten pool and the epitaxial grain growth are simulated using a multiscale model combining the finite element method with the phase-field method.The LoF model is proposed to predict the formation of LoF defects resulting from insufficient melting during L-PBF.Defect mitigation and grain-structure control during L-PBF can be realized simultaneously in the model.The simulation shows the input laser energy density for the as-deposited structure with fine grains and without LoF defects varied from 55.0–62.5 J·mm^(-3)when the interlayer rotation angle was 0°–90°.The optimized process parameters(laser power of 280 W,scanning speed of 1160 mm·s^(-1),and rotation angle of 67°)were computationally screened.In these conditions,the average grain size was 7.0μm,and the ultimate tensile strength and yield strength at room temperature were(1111±3)MPa and(820±7)MPa,respectively,which is 8.8%and10.5%higher than those of reported.The results indicating the proposed multiscale computational approach for predicting grain growth and Lo F defects could allow simultaneous grain-structure control and defect mitigation during L-PBF. 展开更多
关键词 Inconel 718 alloy laser powder bed fusion scanning parameter optimization lack-of-fusion phase-field method finite element method
下载PDF
High temperature tensile properties of laser butt-welded plate of Inconel 718 superalloy with ultra-fine grains 被引量:9
4
作者 曲凤盛 刘旭光 +1 位作者 邢飞 张凯锋 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第10期2379-2388,共10页
For successfully forming multi-sheet cylinder sandwich structure of Inconel 718 superalloy, high temperature tensile properties of laser butt-welded plate of Inconel 718 superalloy were studied. The experiment results... For successfully forming multi-sheet cylinder sandwich structure of Inconel 718 superalloy, high temperature tensile properties of laser butt-welded plate of Inconel 718 superalloy were studied. The experiment results show that tensile direction has great effect on elongation of the laser butt-welded plate. Under conditions of transverse direction tension, the maximum elongation reaches 458.56% at 950 °C with strain rate of 3.1-10-4 s-1, in which the strain rate sensitivity value m is 0.352 and the welding seam is not deformed. Under conditions of longitudinal direction tension, the maximum elongation is 178.96% at 965 °C with strain rate of 6.2-10-4 s-1, in which m-value is 0.261, and the welding seam contributes to the deformation with the matrix. The microstructure in as-welded fusion zone is constituted of austenite dendrites and Laves phase precipitated in interdendrites. After longitudinal direction tension, a mixed microstructure with dendrite and equiaxed crystal appears in the welding seam due to dynamic recrystallization. After high temperature deforming, many δ-phase grains are transformed from Laves phase grains but a small part of residual Laves phase grains still exist in the welding seam. The deformation result of multi-sheet cylinder sandwich structure verifies that high temperature plasticity of the laser butt-welded plate can meet the requirement of superplastic forming. 展开更多
关键词 Inconel 718 alloy laser welding high temperature plasticity microstructure
下载PDF
Effects of P and B addition on as-cast microstructure and homogenization parameter of Inconel 718 alloy 被引量:4
5
作者 缪竹骏 单爱党 +4 位作者 吴元彪 卢俊 胡莹 刘俊亮 宋洪伟 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第2期318-323,共6页
The effects of phosphorus and boron addition on the as-cast microstructure and homogenization parameters of Inconel 718 were studied. The results indicate that the addition of phosphorus and boron promotes the formati... The effects of phosphorus and boron addition on the as-cast microstructure and homogenization parameters of Inconel 718 were studied. The results indicate that the addition of phosphorus and boron promotes the formation of blocky Laves phase. Due to the strong segregation behavior of boron in the final residual liquid, a low melting B-bearing phase enriched in Nb, Mo and Cr is observed. According to the differential scanning calorimeter results and electron probe micro-analysis characterization, the solidification sequence of Inconel 718 with phosphorus and boron addition in best combination is determined as L→L+γ→L+γ+MC→L+γ+MC+Laves→γ+MC+Laves+MC+Laves+B-bearing phase. Accordingly, the homogenization temperature is recommended to be adjusted at least 40°C lower than that of standard Inconel 718 due to the existence of low melting B-bearing phase. 展开更多
关键词 P B Inconel 718 alloy SOLIDIFICATION microstructure HOMOGENIZATION
下载PDF
Solidification process of conventional superalloy by confocal scanning laser microscope 被引量:4
6
作者 缪竹骏 单爱党 +3 位作者 王威 卢俊 徐文亮 宋洪伟 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第2期236-242,共7页
The solidification process of a conventional superalloy, IN718, was investigated by confocal scanning laser microscope (CSLM). The liquid fraction during solidification was obtained as a function of real time and te... The solidification process of a conventional superalloy, IN718, was investigated by confocal scanning laser microscope (CSLM). The liquid fraction during solidification was obtained as a function of real time and temperature in reference with the in-situ observation. The characteristics of L→γ transformation were analyzed and the γ growing rate of each stage was also calculated. Scheil equation was employed to predict the segregation behavior, and the predict results are in consistence with the experimental results. As a result, the confocal scanning laser microscope shows a great potential for solidification process research. 展开更多
关键词 IN718 alloy SOLIDIFICATION IN-SITU confocal scanning laser microscope SEGREGATION
下载PDF
Optimization of micro milling electrical discharge machining of Inconel 718 by Grey-Taguchi method 被引量:3
7
作者 林茂用 曹中丞 +3 位作者 许春耀 邱蕙 黄鹏丞 林裕城 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第3期661-666,共6页
The optimization of micro milling electrical discharge machining(EDM) process parameters of Inconel 718 alloy to achieve multiple performance characteristics such as low electrode wear,high material removal rate and... The optimization of micro milling electrical discharge machining(EDM) process parameters of Inconel 718 alloy to achieve multiple performance characteristics such as low electrode wear,high material removal rate and low working gap was investigated by the Grey-Taguchi method.The influences of peak current,pulse on-time,pulse off-time and spark gap on electrode wear(EW),material removal rate(MRR) and working gap(WG) in the micro milling electrical discharge machining of Inconel 718 were analyzed.The experimental results show that the electrode wear decreases from 5.6×10-9 to 5.2×10-9 mm3/min,the material removal rate increases from 0.47×10-8 to 1.68×10-8 mm3/min,and the working gap decreases from 1.27 to 1.19 μm under optimal micro milling electrical discharge machining process parameters.Hence,it is clearly shown that multiple performance characteristics can be improved by using the Grey-Taguchi method. 展开更多
关键词 Inconel 718 alloy micro milling electrical discharge machining electrode wear material removal rate working gap Grey-Taguchi method
下载PDF
SUPERPLASTICITY AND DIFFUSION BONDING OF IN718 SUPERALLOY 被引量:8
8
作者 W.B. Han K.F. Zhang B. Wang D.Z. Wu 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2007年第4期307-312,共6页
The superplasticity and diffusion bonding of IN718 superalloy were studied in this article. The strain rate sensitivity index m was obtained at different temperatures and various initial strain rates using the tensile... The superplasticity and diffusion bonding of IN718 superalloy were studied in this article. The strain rate sensitivity index m was obtained at different temperatures and various initial strain rates using the tensile speed mutation method; m reached its maximum value 0.53 at an initial strain rate of 1×10^-4s^-1 at 1253K. The diffusion bonding parameters, including the bonding temperature T, pressure p, and time t, affected the mechanism of joints. When the bonded specimen with 25μm thick nickel foil interlayer was tensile at room temperature, the shear fracture of the joints with nickel foil interlayer took place at the IN718 part. Microstructure study was carried out with the bonded samples. The microstructure shows an excellent bonding at the interfaces. The optimum parameters for the diffusion bonding are: T = 1273-1323K, p = 20-30MPa, t = 45-60min. 展开更多
关键词 SUPERPLASTICITY diffusion bonding nickel foil IN718 alloy
下载PDF
DEVELOPMENT OF INCONEL~ ALLOY 783,A LOW THERMAL EXPANSION,CRACK GROWTH RESISTANT SUPERALLOY 被引量:25
9
作者 J.H.Thndermann(Inco Alloys International, Inc., Huntington, WV 25705, USA ) 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1996年第6期503-507,共5页
Low thermal expansion superalloys have been used for a number of years in a variety of applications, including gas turbine engines. The low thermal expansion characteristics of the most widely used class of materials ... Low thermal expansion superalloys have been used for a number of years in a variety of applications, including gas turbine engines. The low thermal expansion characteristics of the most widely used class of materials are derived from the ferromagnetic characteristics of Ni, Fe, and Co-based austenitic matrices containing little or no Cr.Alloy developments have been aimed at improving the oxidation resistance and stress accelerated grain boundary oxygen (SAGBO) attack.INCONEL alloy 783 is an oxidation resistant, low coefficient of thermal expansion superalloy developed for gas turbine applications. Alloy 783 represents a culmination in the development, of an alloy system with very high alumtnum content that, in addition to forming γ′,causes βaluminide phase precipitation in the austenitic matrix.This type of structure can be processed to resist both SAGBO and general oxidation,while providing low thermal expansion and useful mechanical properties up to 700℃.Key aspects of the alloy's development are presented. 展开更多
关键词 coefficient of thermal expansion oxidation resistance crack growth resistance SAGBO INCONEL alloy 783 alloy 718 gamma prime phase beta phase
下载PDF
Microstructural characterization of Inconel 718 alloy after pulsed laser surface treatment at different powers 被引量:2
10
作者 Lin-jiang CHAI Shan-shan YUAN +4 位作者 Wei-jiu HUANG Xu-sheng YANG Fang-jun WANG Dong-zhe WANG Jun-jun WANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2018年第8期1530-1537,共8页
An annealed Inconel 718 alloy was surface-treated by pulsed laser at three different powers(100, 50 and 25 W). Microstructural changes induced by the laser treatments were characterized by use of electron backscatte... An annealed Inconel 718 alloy was surface-treated by pulsed laser at three different powers(100, 50 and 25 W). Microstructural changes induced by the laser treatments were characterized by use of electron backscatter diffraction and electron channeling contrast imaging techniques. Results show that both annealing twins and strengthening precipitates profusely existing in the as-received specimen are dissolved at elevated temperatures during the laser irradiation. Meanwhile, in the melting zone(MZ), densities of low angle boundaries(LABs) are greatly increased with a large number of Laves phases preferentially distributed along such LABs. For different specimens, widths and depths of their MZs are found to be gradually reduced with decreasing the laser powers. Orientation analyses reveal that the columnar grains in the MZ of the 100 W specimen could inherit orientations existing in the matrix while lower laser powers promote the formation of more nuclei with scattered orientations to grow to be granular grains in the MZ. Hardness tests reveal that the MZs of all laser-treated specimens are softer than the matrix probably due to both precipitate dissolution and grain coarsening. 展开更多
关键词 Inconel 718 alloy grain boundaries pulsed laser surface treatment electron backscatter diffraction harchless
下载PDF
CONSTITUTIVE RELATIONSHIP OF IN718 ALLOY FOR THERMOVISCOPLASTIC AND MICROSTRUCTURE EVOLUTION COUPLED ANALYSIS 被引量:2
11
作者 D. Liu Y.H. Yang J. Geng Z.J. Luo 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2007年第5期373-379,共7页
The interaction between thermomechanical parameters and microstructure evolution is so intense that it must be considered during the finite element method (FEM) simulation of the hot plastic working process, for mat... The interaction between thermomechanical parameters and microstructure evolution is so intense that it must be considered during the finite element method (FEM) simulation of the hot plastic working process, for materials that are difficult to deform. Taking the microstructure evolution into account, a novel type of constitutive relationship has been put forward for the IN718 alloy. The microstructure evolution model was first established for the dominant microstructure evolution processes. Then the microstructure evolution models and the method to determine the local flow stress of the corresponding microstructure for current thermomechanical parameters and deformation history were presented. Once the local flow stresses of different structures and their volume contributions were defined, the apparent flow stress of the material could be determined as the weighted sum of the local flow stresses and volume contributions. To validate the proposed method, a thermoviscoplastics and microstructure evolution coupled analysis for a forging process of a critical IN718 disk forging was performed. The predicting results were in close agreement with the experimental data. 展开更多
关键词 constitutive relationship microstructure evolution numerical simulation IN718 alloy
下载PDF
Influence of magnetically constricted arc traverse speed (MCATS) on tensile properties and microstructural characteristics of welded Inconel 718 alloy sheets 被引量:1
12
作者 Tushar Sonar Visvalingam Balasubramanian +2 位作者 Sudersanan Malarvizhi Thiruvenkatam Venkateswaran Dhenuvakonda Sivakumar 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第4期1395-1413,共19页
The magnetically constricted arc technique was implemented to mitigate the heat input related metallurgical problems in Gas Tungsten Arc Welding(GTAW)of Inconel 718 alloy particularly Nb segregation and subsequent lav... The magnetically constricted arc technique was implemented to mitigate the heat input related metallurgical problems in Gas Tungsten Arc Welding(GTAW)of Inconel 718 alloy particularly Nb segregation and subsequent laves phase evolution in fusion zone.This paper reports the direct effect of magnetically constricted arc traverse speed(MCATS)on bead profile,tensile properties and microstructural evolution of Inconel 718 alloy sheets joined by Gas Tungsten Constricted Arc Welding(GTCAW)process.The mechanism amenable for the microstructural modification and corresponding influence on the tensile properties of joints is investigated both in qualitative and quantitative manner related to the mechanics of arc constriction and pulsing.It is correlated to the solidification conditions during welding.The relationship between MCATS and Arc Constriction Current(ACC)was derived.Its interaction effect on the magnetic arc constriction and joint performance was analysed.Results showed that the joints fabricated using CATS of 70 mm/min exhibited superior tensile properties(98.39% of base metal strength with 31.50% elongation).It is attributed to the grain refinement in fusion zone microstructure leading to the evolution of finer,discrete laves phase in interdendritic areas. 展开更多
关键词 GTCA welding Inconel 718 alloy Magnetically constricted arc traverse speed Tensile properties Microstructure Laves phase
下载PDF
Role of P,S and B on Creep Behavior of Alloy 718 被引量:3
13
作者 Zhuangqi HU, Hongwei SONG, Shouren GUO and Wenru SUN Institute of Metal Research, The Chinese Academy of Sciences, Shenyang 110016, China 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2001年第4期399-402,共4页
The doping of phosphorus, sulfur and boron in IN718 superalloy can remarkably influence the creep behavior. The modifications of the minor elements seem not to vary the stress exponent and the influences primarily con... The doping of phosphorus, sulfur and boron in IN718 superalloy can remarkably influence the creep behavior. The modifications of the minor elements seem not to vary the stress exponent and the influences primarily concentrate on the effective diffusion coefficient. A pronounced beneficial interaction between P and B and a weaker detrimental interaction between P and S have been obtained. The preexponential frequency constant is proved to be strongly related with the creep activation energy because of the so-called compensation effect. The compensation temperature has been determined to be about 1080 K, which corresponds to the transformation temperature from rapidly coarsened γ'' phase to δ phase. It has been proposed that trace elements can influence the effective diffusion coefficient individually or cooperatively, which in turn either retard or speed the creep process. 展开更多
关键词 Role of P S and B on Creep Behavior of Alloy 718
下载PDF
Influence of laser parameters on segregation of Nb during selective laser melting of Inconel 718 被引量:1
14
作者 Liang Wang Ran Cui +5 位作者 Bin-qiang Li Xue Jia Long-hui Yao Yan-qing Su Jing-jie Guo Tong Liu 《China Foundry》 SCIE CAS 2021年第4期379-388,共10页
A transient three-dimensional powder-scale model was established for understanding the flow field and mass transfer within the molten pool during the selective laser melting(SLM)of Inconel 718 alloy by considering som... A transient three-dimensional powder-scale model was established for understanding the flow field and mass transfer within the molten pool during the selective laser melting(SLM)of Inconel 718 alloy by considering some important physical phenomena,such as,a transition from powder to solid,nonlinearities produced by temperature-dependent materials’properties,and fluid flow in the calculation.The influence of laser power or scanning speed on the flow field and cooling rate was discussed in detail.The simulation results reveal that the motion of molten pool and higher cooling rate promote the mass transfer and benefit the solute distribution by increasing laser power.However,with increasing the scanning speed,the melt flow speed and cooling rate are elevated,resulting in an agglomeration of the solute elements,which is ascribed to the shorter dwelling time of liquid.Therefore,the segregation of Nb can be effectively suppressed by increasing laser power or decreasing scanning speed,which can decrease the dwelling time of liquid. 展开更多
关键词 selective laser melting Inconel 718 alloy flow field mass transfer SEGREGATION
下载PDF
Influence of arc constriction current frequency on tensile properties and microstructural evolution of tungsten inert gas welded thin sheets of aerospace alloy 被引量:2
15
作者 Tushar SONAR Sudersanan MALARVIZHI Visvalingam BALASUBRAMANIAN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第2期456-474,共19页
The main objective of this investigation is to study the influence of arc constriction current frequency(ACCF)on tensile properties and microstructural evolution of aerospace Alloy 718 sheets(2 mm in thickness)joined ... The main objective of this investigation is to study the influence of arc constriction current frequency(ACCF)on tensile properties and microstructural evolution of aerospace Alloy 718 sheets(2 mm in thickness)joined by constricted arc TIG(CA-TIG)welding process.One variable at a time approach of design of experiments(DOE)was used,in which ACCF was varied from 4 to 20 kHz at an interval of 5 levels while other parameters were kept constant.The joints welded using ACCF of 4 kHz exhibited superior tensile properties extending joint efficiency up to 99.20%.It is attributed to the grain refinement in fusion zone leading to the evolution of finer,discrete Laves phase in interdendritic areas.An increase of ACCF above 12 kHz caused severe grain growth and evolution of coarser Laves phase in fusion zone.Alloy 718 welds showed more obvious tendency for Nb segregation and Laves phase formation at higher levels of ACCF due to the slower cooling rate.The volume fraction of Laves phase was increased by 62.31%at ACCF of 20 kHz compared to that at 4 kHz,thereby reducing the tensile properties of joints.This is mainly due to the stacking of heat input in weld thermal cycles at increased levels of ACCF. 展开更多
关键词 constricted arc TIG welding arc constriction current frequency Alloy 718 sheet tensile properties microstructural evolution Laves phase
下载PDF
Introduction of a New Method for Regulating Laves Phases in Inconel 718 Superalloy during a Laser-Repairing Process 被引量:1
16
作者 Shang Sui Haosheng Li +3 位作者 Zuo Li Xuan Zhao Liang Ma Jing Chen 《Engineering》 SCIE EI CAS 2022年第9期239-246,共8页
The morphology,size,and distribution of Laves phases have important influences on the mechanical properties of laser-repaired Inconel 718(IN718)superalloy.Due to the deterioration of the substrate zone,the Laves phase... The morphology,size,and distribution of Laves phases have important influences on the mechanical properties of laser-repaired Inconel 718(IN718)superalloy.Due to the deterioration of the substrate zone,the Laves phase in the laser cladding zone of IN718 superalloy cannot be optimized by a hightemperature solution treatment.In this study,an in situ laser heat-treatment method was proposed to regulate the morphology and size of the Laves phase in the laser cladding zone of IN718 superalloy without impacting the substrate zone.In the in situ laser heat-treatment process,a laser was used to heat previously deposited layers with optimized manufacturing parameters.A thermocouple and an infrared camera were used to analyze thermal cycles and real-time temperature fields,respectively.Microstructures and micro-segregations were observed by optical microscopy,scanning electron microscopy,and electron probe microanalysis.It was found that the in situ laser heat treatment effectively changed the morphology and size of the Laves phase,which was transformed from a continuous striplike shape to a discrete granular shape.The effective temperature range and duration were the two main factors influencing the Laves phase during the in situ laser heat-treatment process.The effective temperature range was determined by the laser linear energy density,and the peak temperature increased with the increase of the linear energy density.In addition,the temperature amplitude could be reduced by simultaneously increasing the laser power and the scanning velocity.Finally,a flow diagram was developed based on the in situ laser heat-treatment process,and the deposition of a single-walled sample with fine and granular Laves phases was detected. 展开更多
关键词 Laser repair In situ laser heat treatment Inconel 718 alloy Laves phase
下载PDF
Investigation of secondary phases and tensile strength of nitrogen-containing Alloy 718 weldment 被引量:1
17
作者 Behrooz Nabavi Massoud Goodarzi Abdul Khaliq Khan 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2020年第9期1259-1268,共10页
The influence of nitrogen content on the precipitation of secondary phases and the tensile strength of Alloy 718 during gas tungstenarc welding was investigated. Various types of precipitates were characterized using ... The influence of nitrogen content on the precipitation of secondary phases and the tensile strength of Alloy 718 during gas tungstenarc welding was investigated. Various types of precipitates were characterized using scanning electron microscopy and transmission electronmicroscopy. The results showed that in the fusion zone, the volume fraction of Nb-rich phases such as Laves, (Nb,Ti)C, and δ phases, as wellas Ti-rich phases such as (Ti,Nb)CN and (Ti,Nb)N, increased with increase in the nitrogen content due to the microsegregation of Nb and Tiwithin interdendritic areas. Nitrogen was also found to decrease the size of γ′′ particles within γ dendrites. For precipitates in the partiallymelted zone, constitutional liquation was observed for both (Nb,Ti)C and (Ti,Nb)N particles. Based on the results of tensile tests, the weld containing0.015wt% nitrogen exhibited the highest ultimate tensile strength (UTS), whereas more addition of nitrogen led to a decrease in both theUTS and yield strength due to the increased content of brittle Laves phases and decreased size of γ′′. 展开更多
关键词 NITROGEN secondary phases gas tungsten arc welding tensile strength Alloy 718
下载PDF
THE SEGREGATION OF SULFUR AND PHOSPHORUS IN NICKEL-BASE ALLOY 718 被引量:1
18
作者 J.X. Dong X.B. Liu X.S. Xie and R.G. Thompson(Department of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China)(University of Alabama at Birmingham, Birmingham AL35294-4461, USA) 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1997年第6期510-514,共5页
The segregation behavior of sulfur and phosphorus has been studied by means of scanning Auger microprobe (SAM) on microstructural interfaces,such as grain boundaries and carbide/matrix interfaces,The experimental resu... The segregation behavior of sulfur and phosphorus has been studied by means of scanning Auger microprobe (SAM) on microstructural interfaces,such as grain boundaries and carbide/matrix interfaces,The experimental results clearly reveal that sulfur strongly segregates on carbide/matrix interfaces,while phosphorus predominantly distributes on grain boundaries. Molybdenum tends to segregat on grain boundaries. 展开更多
关键词 SUPERALLOY segregation Alloy 718
下载PDF
NICKEL-BASE ALLOY SHEET ALLOYS USED IN AEROSPACE APPLICATIONS 被引量:1
19
作者 J.H. Tundermann(Inco Alloys International,Inc.,Huntington,WV 25705,USA ) 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1996年第6期423-432,共10页
Many gas turbine components are made from nickel alloy sheet. Most are used for directing or containing gases at high temperatures and pressures where metal temperatures can be as high as 1090℃ (2000°F). These a... Many gas turbine components are made from nickel alloy sheet. Most are used for directing or containing gases at high temperatures and pressures where metal temperatures can be as high as 1090℃ (2000°F). These applications included combustor systems, casings and liners, transition and exhaust ducting, afterburners, and thrust reversere. Light weight components and sub-assemblies call for alloy sheet with high levels of stength and oxidation resistance. Complex component design calls for excellent ductility and ease of fabrication.The wide range of nickel alloy sheet alloys presently used in aircraft and land-based gas turbines is briefly described and typical properties presented. New sheet alloy developments, involving INCONEL ̄* alloys 625LCF, 718SPF and MA754, are presented including the process routes involved and material properties. 展开更多
关键词 aerospace sheet products nickel-base alloys INCONEL alloy 625LCF INCONEL alloy 718SPF INCONEL alloy MA754 low cycle fatigue superplastic forming oxide dispersion strengthened
下载PDF
KINETICS OF δ PHASE PRECIPITATION IN COLD ROLLED INCONEL 718 ALLOY
20
作者 Liu Wenchang, Yao Mei (Yanshan University, Qinhuangdao, China, 066004) Liu Runguang (Harbin Institute of Technology, Harbin, China, 150001) Chen Zonglin, Jiang Zhaoqun, Wang Shaogang (Shenyang Liming Engine Manufacturing Company, Shenyang, C 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 1997年第3期54-57,共4页
The volume fraction of δ phase in cold rolled Inconel 718 alloy aged at 910℃ for different times is measured by X ray diffraction techniques, and the influence of cold rolling on the kinetics of δ phase precipitat... The volume fraction of δ phase in cold rolled Inconel 718 alloy aged at 910℃ for different times is measured by X ray diffraction techniques, and the influence of cold rolling on the kinetics of δ phase precipitation is investigated. It has been found that the relation between the volume fraction of δ phase and aging time follows the Avrami equation. With increasing cold rolling reduction, the value of n decreases and the value of a increases. 展开更多
关键词 cold rolling precipitation (chemistry) KINETICS Inconel 718 alloy δ phase
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部