The atomic scale computer simulation for initial precipitation mechanism of Ni75Al6V19 alloy was carried out for the first time by employing the microscopic diffusion equation. The initial precipitation process was in...The atomic scale computer simulation for initial precipitation mechanism of Ni75Al6V19 alloy was carried out for the first time by employing the microscopic diffusion equation. The initial precipitation process was invest igated throughsimulating the atomic pictures and calculating the order parameters of the two kinds of ordered phases. Simulationresults show that the γ′ordered phase precipitated earlier than θ ordered phase by congruent ordering+spinodal decomposition mechanism and thus produced a nonstoicheometric γ′ single ordered phase. Then, the nonstoichiometricθ phase precipitated by a non-classical nucleation and growth mechanism at the APBS of γ′ phase.展开更多
基金This work was supported by the National Natural Science Foundation of China (Grant No.50071046)
文摘The atomic scale computer simulation for initial precipitation mechanism of Ni75Al6V19 alloy was carried out for the first time by employing the microscopic diffusion equation. The initial precipitation process was invest igated throughsimulating the atomic pictures and calculating the order parameters of the two kinds of ordered phases. Simulationresults show that the γ′ordered phase precipitated earlier than θ ordered phase by congruent ordering+spinodal decomposition mechanism and thus produced a nonstoicheometric γ′ single ordered phase. Then, the nonstoichiometricθ phase precipitated by a non-classical nucleation and growth mechanism at the APBS of γ′ phase.