The retrogression kinetics for grain boundary precipitate (GBP) of 7A55 aluminum alloy was investigated by transmission electron microscopy (TEM) observation. The results reveal that the coarsening behavior of GBP...The retrogression kinetics for grain boundary precipitate (GBP) of 7A55 aluminum alloy was investigated by transmission electron microscopy (TEM) observation. The results reveal that the coarsening behavior of GBP obeys “LSW” theory, namely, the cube of GBP average size has a linear dependence relation to retrogression time, and the coarsening rate accelerates at the elevated retrogression temperature. The GBP coarsening activation energy Qo of (115.2±1.3) kJ/mol is obtained subsequently. Taking the retrogression treatment schedule of 190℃, 45 min derived from AA7055 thin plate as reference, the non-isothermal retrogression model for GBP coarsening behavior is established based on “LSW”theory and “iso-kinetics” solution, which includes an Arrhenius form equation. After that, the average size of GBP r(t) is predicted successfully at any non-isothermal process T(t) when the initial size of GBP r0 is given. Finally, the universal characterization method for the microstructure homogeneity along the thickness direction of TA55 aluminum alloy thick plate is also set up.展开更多
The hot deformation behavior of 7A55 aluminum alloy was investigated at the temperature ranging from 300 ℃ to 450 ℃ and strain rate ranging from 0.01 s-1 to 1 s-1 on a Gleeble-3500 simulator. Processing maps were es...The hot deformation behavior of 7A55 aluminum alloy was investigated at the temperature ranging from 300 ℃ to 450 ℃ and strain rate ranging from 0.01 s-1 to 1 s-1 on a Gleeble-3500 simulator. Processing maps were established in order to apprehend the kinetics of hot deformation and the rate controlling mechanism was interpreted by the kinetic rate analysis obeying power-law relation. The results indicated that one significant domain representing dynamic recrystallization (DRX) existed on the processing maps and lying in 410-450 °C and 0.05-1 s-1. The conclusions of kinetic analysis correlated well with those obtained from processing maps. The apparent activation energy values calculated in the dynamic recrystallization (DRX) domain and the stability regions except dynamic recrystallization (DRX) domain were 91.2 kJ/mol and 128.8 kJ/mol, respectively, which suggested that grain boundary self-diffusion and cross-slip were the rate controlling mechanisms.展开更多
The microstructure of the as-cast 7A55 aluminum alloy and its evolution during homogenization were investigated by means of optical microscopy (OM), scanning electron microscopy (SEM), energy dispersive spectrosco...The microstructure of the as-cast 7A55 aluminum alloy and its evolution during homogenization were investigated by means of optical microscopy (OM), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), and differential scanning calorimetry (DSC) analysis. The results indicate that the microstructure of the as-cast 7A55 aluminum alloy mainly consists of the dendritic network of aluminum solid solution, Al/AIZnMgCu eutectic phases, and intermetaUic compounds MgZn2, Al2CuMg, Al7Cu2Fe, and Al23CuFe4. After homogenization at 470℃ for 48 h, Al/AlZnMgCu eutectic phases are dissolved into the matrix, and a small amount of high melting-point secondary phases were formed, which results in an increasing of the starting melting temperature of 7A55 aluminum alloy The high melting-point secondary phases were eliminated mostly when the homogenization time achieved to 72 h. Therefore, the reasonable homogenization heat treatment process for 7A55 aluminum alloy ingots was chosen as 470℃/72 h.展开更多
基金Project(2012CB619505)supported by the National Basic Research Program of China
文摘The retrogression kinetics for grain boundary precipitate (GBP) of 7A55 aluminum alloy was investigated by transmission electron microscopy (TEM) observation. The results reveal that the coarsening behavior of GBP obeys “LSW” theory, namely, the cube of GBP average size has a linear dependence relation to retrogression time, and the coarsening rate accelerates at the elevated retrogression temperature. The GBP coarsening activation energy Qo of (115.2±1.3) kJ/mol is obtained subsequently. Taking the retrogression treatment schedule of 190℃, 45 min derived from AA7055 thin plate as reference, the non-isothermal retrogression model for GBP coarsening behavior is established based on “LSW”theory and “iso-kinetics” solution, which includes an Arrhenius form equation. After that, the average size of GBP r(t) is predicted successfully at any non-isothermal process T(t) when the initial size of GBP r0 is given. Finally, the universal characterization method for the microstructure homogeneity along the thickness direction of TA55 aluminum alloy thick plate is also set up.
基金Project(2012CB619505)supported by the National Basic Research Program of China
文摘The hot deformation behavior of 7A55 aluminum alloy was investigated at the temperature ranging from 300 ℃ to 450 ℃ and strain rate ranging from 0.01 s-1 to 1 s-1 on a Gleeble-3500 simulator. Processing maps were established in order to apprehend the kinetics of hot deformation and the rate controlling mechanism was interpreted by the kinetic rate analysis obeying power-law relation. The results indicated that one significant domain representing dynamic recrystallization (DRX) existed on the processing maps and lying in 410-450 °C and 0.05-1 s-1. The conclusions of kinetic analysis correlated well with those obtained from processing maps. The apparent activation energy values calculated in the dynamic recrystallization (DRX) domain and the stability regions except dynamic recrystallization (DRX) domain were 91.2 kJ/mol and 128.8 kJ/mol, respectively, which suggested that grain boundary self-diffusion and cross-slip were the rate controlling mechanisms.
基金financially supported by the National Key Technologies R&D Program of China (No.2007BAE38B06)the National Natural Science Foundation of China (No.50904010)
文摘The microstructure of the as-cast 7A55 aluminum alloy and its evolution during homogenization were investigated by means of optical microscopy (OM), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), and differential scanning calorimetry (DSC) analysis. The results indicate that the microstructure of the as-cast 7A55 aluminum alloy mainly consists of the dendritic network of aluminum solid solution, Al/AIZnMgCu eutectic phases, and intermetaUic compounds MgZn2, Al2CuMg, Al7Cu2Fe, and Al23CuFe4. After homogenization at 470℃ for 48 h, Al/AlZnMgCu eutectic phases are dissolved into the matrix, and a small amount of high melting-point secondary phases were formed, which results in an increasing of the starting melting temperature of 7A55 aluminum alloy The high melting-point secondary phases were eliminated mostly when the homogenization time achieved to 72 h. Therefore, the reasonable homogenization heat treatment process for 7A55 aluminum alloy ingots was chosen as 470℃/72 h.