Beryllium-7 (^7Be) and lead-210 (^210pb) activities were measured from October 2002 to January 2004 at Waliguan Observatory (WO: 36.287°N, 100.898°E, 3816 m a.s.l (above sea level) in northwest China...Beryllium-7 (^7Be) and lead-210 (^210pb) activities were measured from October 2002 to January 2004 at Waliguan Observatory (WO: 36.287°N, 100.898°E, 3816 m a.s.l (above sea level) in northwest China. ^7Be and ^210pb activities are high with overall averages of 14.74-3.5 mBq m^-3 and 1.8±0.8 mBq m^-3 respectively. For both 7Be and ^210pb, there are significant short-term and seasonal variations with a commonly low value in summer (May-September) and a monthly maximum in April (for ^7Be) and in December (for ^210pb). The ratio of ^7Be/^210pb showed a broad maximum extending from April to July, coinciding with a seasonal peak in surface ozone (O3). The seasonal cycles of ^7Be and ^210pb activities were greatly influenced by precipitation and thermal dynamical conditions over the boundary layer, especially for ^210Pb. The vertical mixing process between the boundary layer and the aloft air modulates the variations of ^7Be and ^210pb at WO in summer. It is indicated that air mass had longer residence time and originated from higher altitudes at WO in the spring-summer time and the winter in 2003. During an event with extremely high weeklyaveraged ^7Be concentration (24.8 mBq m^-3) together with high O3 levels and low water mixing ratio, we found that air masses had been convectively transported a long distance to WO from high latitude source regions in central Asia, where significant subsiding motions were observed. In another case with the extreme ^210pb activity of 5.7 mBq m^-3 high CO2 level and specific humidity (in winter), air masses had come from south China and north Indian regions where 222Rn activities were high. This study, using ^7Be and ^210pb as atmospheric tracers, has revealed that complex interactions of convective mixing from the upper troposphere and long-range transports exist at WO.展开更多
Beryllium-7 (7Be) and lead-210 (210Pb) radioac- tivity in aerosols collected, from October 2002 to January 2004 at Mt. Waliguan, by the Global Atmospheric Watch (GAW) Station, Qinghai Province is presented. The data w...Beryllium-7 (7Be) and lead-210 (210Pb) radioac- tivity in aerosols collected, from October 2002 to January 2004 at Mt. Waliguan, by the Global Atmospheric Watch (GAW) Station, Qinghai Province is presented. The data were analyzed together with simultaneously measured surface ozone concentrations. We found that short time variations of 7Be and 210Pb were linked to alternations of synoptic weather around the Mt. Waliguan region. 210Pb showed the lowest concentration in summer while Be showed no obvious sea- 7 sonal changes. Relatively high Be and 7 210 Pb radioactivity was observed at Mt. Waliguan when compared with the ob- servations at other mountain sites in other parts of the world. Surface ozone and 7Be showed a consistent seasonalvariation. Surface ozone correlated fairly well with 7Be/210Pb ratio. This suggested that vertical transport from higher altitudes of the atmosphere has predominant effects on the budget of surface ozone at Mt. Waliguan.展开更多
基金the National Science Foundation of China (Grant Nos. 40175032 , 40575013).
文摘Beryllium-7 (^7Be) and lead-210 (^210pb) activities were measured from October 2002 to January 2004 at Waliguan Observatory (WO: 36.287°N, 100.898°E, 3816 m a.s.l (above sea level) in northwest China. ^7Be and ^210pb activities are high with overall averages of 14.74-3.5 mBq m^-3 and 1.8±0.8 mBq m^-3 respectively. For both 7Be and ^210pb, there are significant short-term and seasonal variations with a commonly low value in summer (May-September) and a monthly maximum in April (for ^7Be) and in December (for ^210pb). The ratio of ^7Be/^210pb showed a broad maximum extending from April to July, coinciding with a seasonal peak in surface ozone (O3). The seasonal cycles of ^7Be and ^210pb activities were greatly influenced by precipitation and thermal dynamical conditions over the boundary layer, especially for ^210Pb. The vertical mixing process between the boundary layer and the aloft air modulates the variations of ^7Be and ^210pb at WO in summer. It is indicated that air mass had longer residence time and originated from higher altitudes at WO in the spring-summer time and the winter in 2003. During an event with extremely high weeklyaveraged ^7Be concentration (24.8 mBq m^-3) together with high O3 levels and low water mixing ratio, we found that air masses had been convectively transported a long distance to WO from high latitude source regions in central Asia, where significant subsiding motions were observed. In another case with the extreme ^210pb activity of 5.7 mBq m^-3 high CO2 level and specific humidity (in winter), air masses had come from south China and north Indian regions where 222Rn activities were high. This study, using ^7Be and ^210pb as atmospheric tracers, has revealed that complex interactions of convective mixing from the upper troposphere and long-range transports exist at WO.
基金This work was financially supported by the National Natural Science Foundation of China(Grant No.20175032).
文摘Beryllium-7 (7Be) and lead-210 (210Pb) radioac- tivity in aerosols collected, from October 2002 to January 2004 at Mt. Waliguan, by the Global Atmospheric Watch (GAW) Station, Qinghai Province is presented. The data were analyzed together with simultaneously measured surface ozone concentrations. We found that short time variations of 7Be and 210Pb were linked to alternations of synoptic weather around the Mt. Waliguan region. 210Pb showed the lowest concentration in summer while Be showed no obvious sea- 7 sonal changes. Relatively high Be and 7 210 Pb radioactivity was observed at Mt. Waliguan when compared with the ob- servations at other mountain sites in other parts of the world. Surface ozone and 7Be showed a consistent seasonalvariation. Surface ozone correlated fairly well with 7Be/210Pb ratio. This suggested that vertical transport from higher altitudes of the atmosphere has predominant effects on the budget of surface ozone at Mt. Waliguan.