期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Microstructure, mechanical properties and corrosion behavior of commercial 7N01 alloys 被引量:1
1
作者 Pei-hao ZHAO Xiao-lan WU +9 位作者 Yang LIU Kun-yuan GAO Sheng-ping WEN Wu WEI Li RONG Hui HUANG Hong WU De-jing ZHOU Qian ZHANG Zuo-ren NIE 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2022年第3期778-789,共12页
The effect of grain morphology and precipitates on mechanical properties and corrosion behavior of two commercial 7 N01 alloys was studied using transmission electron microscopy(TEM) and scanning electron microscopy(S... The effect of grain morphology and precipitates on mechanical properties and corrosion behavior of two commercial 7 N01 alloys was studied using transmission electron microscopy(TEM) and scanning electron microscopy(SEM) equipped with electron backscatter diffraction(EBSD). Results showed that the recrystallization degree of the outer surface of 7 N01-I alloy was lower than that of 7 N01-II alloy. The main strengthening precipitates of two alloys were mainly η’ phases. The grain boundary precipitates(GBPs) of 7 N01-I alloy distributed discontinuously, while those of 7 N01-II alloy distributed continuously. The strength of two 7 N01 alloys was similar, but the maximum corrosion depth of 7 N01-I alloy was less than that of 7 N01-II alloy, because the discontinuous GBPs and the lower recrystallization degree of outer surface of 7 N01-I alloy were favorable for improving corrosion behavior. Different models of strengthening mechanism were discussed, and the corrosion behavior was correlated with microstructure. 展开更多
关键词 7n01 alloys MICROSTRUCTURE mechanical properties corrosion behavior
下载PDF
Effect of three-step homogenization on microstructure and properties of 7N01 aluminum alloys 被引量:8
2
作者 Hua-qiang LIN Ling-ying YE +4 位作者 Lin SUN Tao XIAO Sheng-dan LIU Yun-lai DENG Xin-ming ZHANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2018年第5期829-838,共10页
The effect of different homogenization treatments on the microstructure and properties of the 7N01 aluminum alloy was investigated using hardness measurements, electrical conductivity measurements, tensile and slow st... The effect of different homogenization treatments on the microstructure and properties of the 7N01 aluminum alloy was investigated using hardness measurements, electrical conductivity measurements, tensile and slow strain rate tests, electron probe microanalysis, optical microscopy, scanning electron microscopy, and transmission electron microscopy. The results revealed that three-step homogenization improved the uniformity of Zr distribution by eliminating segregation of the main alloying elements. During the second homogenization step at 350 °C for 10 h, coarse and strip-like equilibrium η phases formed which assisted the nucleation of Al3Zr dispersoids and reduced the width of the precipitate-free zone of A13Zr dispersoids. As a result, coarse recrystallization was greatly reduced after homogenization at 200 °C, 2 h + 350 °C, 10 h + 470 °C, 12 h, which contributed to improving the overall properties of the 7N01 aluminum alloys. 展开更多
关键词 7n01 aluminum alloy three-step homogenization microstzucture mechanical properties stress corrosion cracking
下载PDF
Fatigue behavior and life prediction of A7N01 aluminium alloy welded joint 被引量:7
3
作者 刘雪松 张亮 +2 位作者 王林森 吴双辉 方洪渊 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第12期2930-2936,共7页
Fatigue characteristics of A7N01 aluminium alloy welded joint were investigated and a fatigue crack initiation life-based model was proposed. The difference of fatigue crack initiation life among base metal, weld meta... Fatigue characteristics of A7N01 aluminium alloy welded joint were investigated and a fatigue crack initiation life-based model was proposed. The difference of fatigue crack initiation life among base metal, weld metal and heat affected zone (HAZ) is slight. Furthermore, the ratio of fatigue crack initiation life (Ni) to fatigue life to failure(Nf) is a material dependent parameter, 26.32%, 40.21% and 60.67% for base metal, HAZ and weld metal, respectively. Total fatigue life predicted using the presented model is in good agreement with the experimental data and that using Basquin’s model. The observation results of fatigue fracture surfaces, using scanning electron microscope (SEM), demonstrate that fatigue crack initiates from smooth surface due to welding process for weld metal, blowhole in HAZ causes fatigue crack initiation, and the crushed second phase particles play an important part in fatigue crack initiation in base metal. 展开更多
关键词 aluminium alloy A7n01 aluminum alloy welded joint crack initiation FATIGUE fatigue life life prediction
下载PDF
Effects of in-situZrB_2 nanoparticles and scandium on microstructure and mechanical property of 7N01 aluminum alloy
4
作者 Xizhou Kai Yuhui Wang +8 位作者 Ruikun Chen Yanjie Peng Anjun Shi Ran Tao Xiangfeng Liang Guirong Li Gang Chen Xiaojing Xu Yutao Zhao 《Journal of Rare Earths》 SCIE EI CAS CSCD 2024年第3期612-620,I0007,共10页
In this study, the in-situ synthesized ZrB_(2) nanoparticles and rare earth Sc were introduced to enhance the strength and ductility of 7N01 aluminum alloy, via the generation of high-melting and uniform nanodispersoi... In this study, the in-situ synthesized ZrB_(2) nanoparticles and rare earth Sc were introduced to enhance the strength and ductility of 7N01 aluminum alloy, via the generation of high-melting and uniform nanodispersoids. The microstructure and mechanical property evolution of the prepared composites and the interaction between ZrB_(2) and Sc were studied in detail. The microstructure investigation shows that the introduction of rare earth scandium(Sc) can promote the distribution of ZrB_(2) nanoparticles, by improving their wettability to the Al melt. Meanwhile, the addition of rare earth Sc also modifies the coarse Al Zn Mg Mn Fe precipitated phases, refines the matrix grains and generates high-melting Al_3(Sc,Zr)/Al_3Sc nanodispersoids. Tensile tests of the composites show that with the combinatorial introduction of ZrB_(2) and Sc, the strength and ductility of the composites are improved simultaneously compared with the corresponding 7N01 alloy, ZrB_(2) /7N01 composite and Sc/7N01 alloy. And the optimum contents of ZrB_(2) and Sc are 3 wt% and 0.2 wt% in this study. The yield strength, ultimate strength and elongation of(3 wt% ZrB_(2) +0.2 wt% Sc)/7N01 composite are 477 MPa, 506 MPa and 9.8%, increased about 18.1%, 12.2%and 38% compared to 7N01 alloy. Furthermore, the cooperation strengthening mechanisms of ZrB_(2) and Sc are also discussed. 展开更多
关键词 7n01 aluminum alloy In-situ ZrB_(2)nanoparticles Rare earth Sc Microstructure Mechanical property Mechanism
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部