Spontaneous preterm birth (SPTB) is characterized by the delivery of a baby before 37 completed weeks of gestation, and this condition is associated with significant health challenges for the newborn. Emerging evidenc...Spontaneous preterm birth (SPTB) is characterized by the delivery of a baby before 37 completed weeks of gestation, and this condition is associated with significant health challenges for the newborn. Emerging evidence highlights the importance of biomarkers for understanding the mechanisms underlying SPTB. One such biomarker, 8-OH-2dG, plays a critical role in evaluating oxidative stress and its impact on pregnancy outcomes. It has been demonstrated that 8-OH-2dG is a product of oxidative DNA damage and is widely recognized as a key indicator of cellular oxidative stress. Elevated reactive oxygen species in SPTB result in higher levels of the DNA degradation product 8-OH-2dG in amniotic fluid, causing damage to maternal and fetal tissues that could lead to premature rupture of fetal membranes. Therefore, evaluating the role of 8-OH-2dG in SPTB is of great interest. This review provides an overview of the current knowledge on 8-OH-2dG as a biomarker for SPTB and aims to elucidate its mechanism in this condition.展开更多
文摘Spontaneous preterm birth (SPTB) is characterized by the delivery of a baby before 37 completed weeks of gestation, and this condition is associated with significant health challenges for the newborn. Emerging evidence highlights the importance of biomarkers for understanding the mechanisms underlying SPTB. One such biomarker, 8-OH-2dG, plays a critical role in evaluating oxidative stress and its impact on pregnancy outcomes. It has been demonstrated that 8-OH-2dG is a product of oxidative DNA damage and is widely recognized as a key indicator of cellular oxidative stress. Elevated reactive oxygen species in SPTB result in higher levels of the DNA degradation product 8-OH-2dG in amniotic fluid, causing damage to maternal and fetal tissues that could lead to premature rupture of fetal membranes. Therefore, evaluating the role of 8-OH-2dG in SPTB is of great interest. This review provides an overview of the current knowledge on 8-OH-2dG as a biomarker for SPTB and aims to elucidate its mechanism in this condition.