采用从头算(ab initio)和密度泛函理论(DFT B3LYP)方法。对二(2-苯基-8-羟基喹啉)锌(Zn(qPh)2)及其衍生物的基态结构进行优化,同时用ab initio HF单激发组态相互作用(CIS)法在6-31G基组上优化其最低激发单重态几何结构,用含时密度泛函理...采用从头算(ab initio)和密度泛函理论(DFT B3LYP)方法。对二(2-苯基-8-羟基喹啉)锌(Zn(qPh)2)及其衍生物的基态结构进行优化,同时用ab initio HF单激发组态相互作用(CIS)法在6-31G基组上优化其最低激发单重态几何结构,用含时密度泛函理论(TD-DFT/B3LYP)及6-31G基组计算吸收和发射光谱。计算表明,该类物质电子在基态与激发态间的跃迁,主要是电子云分布由定域化向离域化的转变。吸收及发射光谱的计算值与实验值基本符合。该类化合物的电子亲和能较大,都是优良的电子传输材料,改变中心金属原子对配合物光谱性质影响不大。而羟基氧被硫原子取代后,化合物的吸收光谱产生明显红移。展开更多
采用从头算法(ab initio)和密度泛函理论(DFT B3LYP)方法,对8-羟基喹啉锌(Znq2)及其3种衍生物的基态结构进行优化,同时用ab initio HF单激发组态相互作用(CIS)法在6-31G(d)基组上优化其最低激发单重态几何结构,用含时密度泛函理论(TD-DF...采用从头算法(ab initio)和密度泛函理论(DFT B3LYP)方法,对8-羟基喹啉锌(Znq2)及其3种衍生物的基态结构进行优化,同时用ab initio HF单激发组态相互作用(CIS)法在6-31G(d)基组上优化其最低激发单重态几何结构,用含时密度泛函理论(TD-DFT/B3LYP)及6-31G(d)基组计算吸收和发射光谱。计算表明,该类物质电子在基态与激发态间的跃迁,主要是在配体8-羟基喹啉(q)环内的电荷转移,电子从含O的苯酚环转移至含N的吡啶环上。该类化合物的电子亲和能较大,都是优良的电子传输材料,改变取代基及中心金属原子均可以达到调控发光材料的光谱波段的目的。展开更多
文摘采用从头算(ab initio)和密度泛函理论(DFT B3LYP)方法。对二(2-苯基-8-羟基喹啉)锌(Zn(qPh)2)及其衍生物的基态结构进行优化,同时用ab initio HF单激发组态相互作用(CIS)法在6-31G基组上优化其最低激发单重态几何结构,用含时密度泛函理论(TD-DFT/B3LYP)及6-31G基组计算吸收和发射光谱。计算表明,该类物质电子在基态与激发态间的跃迁,主要是电子云分布由定域化向离域化的转变。吸收及发射光谱的计算值与实验值基本符合。该类化合物的电子亲和能较大,都是优良的电子传输材料,改变中心金属原子对配合物光谱性质影响不大。而羟基氧被硫原子取代后,化合物的吸收光谱产生明显红移。
文摘采用从头算法(ab initio)和密度泛函理论(DFT B3LYP)方法,对8-羟基喹啉锌(Znq2)及其3种衍生物的基态结构进行优化,同时用ab initio HF单激发组态相互作用(CIS)法在6-31G(d)基组上优化其最低激发单重态几何结构,用含时密度泛函理论(TD-DFT/B3LYP)及6-31G(d)基组计算吸收和发射光谱。计算表明,该类物质电子在基态与激发态间的跃迁,主要是在配体8-羟基喹啉(q)环内的电荷转移,电子从含O的苯酚环转移至含N的吡啶环上。该类化合物的电子亲和能较大,都是优良的电子传输材料,改变取代基及中心金属原子均可以达到调控发光材料的光谱波段的目的。