The feasibility of using frequency gradient analysis (FGA), a digital method based on Fourier transform, to discriminate neutrons and T rays in the environment of an 8-bit sampling system has been investigated. The ...The feasibility of using frequency gradient analysis (FGA), a digital method based on Fourier transform, to discriminate neutrons and T rays in the environment of an 8-bit sampling system has been investigated. The performances of most pulse shape discrimination methods in a scintillation detection system using the time-domain features of the photomultiplier tube anode signal will be lower or non-effective in this low resolution sampling system. However, the FGA method using the frequency-domain features of the anode signal exhibits a strong insensitivity to noise and can be used to discriminate neutrons and ~/rays in the above sampling system. A detailed study of the quality of the FGA method in BC501A liquid scintillators is presented using a 5 G samples/s 8-bit oscilloscope and a 14.1 MeV neutron generator. A comparison of the discrimination results of the time-of-flight and conventional charge comparison (CC) methods proves the applicability of this technique. Moreover, FGA has the potential to be implemented in current embedded electronics systems to provide real-time discrimination in standalone instruments.展开更多
Multi-precision multiplication and squaring are the performance-critical operations for the implementation of public-key cryptography, such as exponentiation in RSA, and scalar multiplication in elliptic curve cryptog...Multi-precision multiplication and squaring are the performance-critical operations for the implementation of public-key cryptography, such as exponentiation in RSA, and scalar multiplication in elliptic curve cryptography (ECC). In this paper, we provide a survey on the multi-precision multiplication and squaring techniques, and make special focus on the comparison of their performance and memory footprint on sensor nodes using 8-bit processors, Different from the previous work, our advantages are in at least three aspects. Firstly, this survey includes the existing techniques for multi- precision multiplication and squaring on sensor nodes over prime fields. Secondly, we analyze and evaluate each method in a systematic and objective way. Thirdly, this survey also provides suggestions for selecting appropriate multiplication and squaring techniques for concrete implementation of public-key cryptography. At the end of this survey, we propose the research challenges on efficient implementation of the multiplication and the squaring operations based on our observation.展开更多
基金Supported by National Natural Science Foundation of China (A050508/11175254)
文摘The feasibility of using frequency gradient analysis (FGA), a digital method based on Fourier transform, to discriminate neutrons and T rays in the environment of an 8-bit sampling system has been investigated. The performances of most pulse shape discrimination methods in a scintillation detection system using the time-domain features of the photomultiplier tube anode signal will be lower or non-effective in this low resolution sampling system. However, the FGA method using the frequency-domain features of the anode signal exhibits a strong insensitivity to noise and can be used to discriminate neutrons and ~/rays in the above sampling system. A detailed study of the quality of the FGA method in BC501A liquid scintillators is presented using a 5 G samples/s 8-bit oscilloscope and a 14.1 MeV neutron generator. A comparison of the discrimination results of the time-of-flight and conventional charge comparison (CC) methods proves the applicability of this technique. Moreover, FGA has the potential to be implemented in current embedded electronics systems to provide real-time discrimination in standalone instruments.
文摘Multi-precision multiplication and squaring are the performance-critical operations for the implementation of public-key cryptography, such as exponentiation in RSA, and scalar multiplication in elliptic curve cryptography (ECC). In this paper, we provide a survey on the multi-precision multiplication and squaring techniques, and make special focus on the comparison of their performance and memory footprint on sensor nodes using 8-bit processors, Different from the previous work, our advantages are in at least three aspects. Firstly, this survey includes the existing techniques for multi- precision multiplication and squaring on sensor nodes over prime fields. Secondly, we analyze and evaluate each method in a systematic and objective way. Thirdly, this survey also provides suggestions for selecting appropriate multiplication and squaring techniques for concrete implementation of public-key cryptography. At the end of this survey, we propose the research challenges on efficient implementation of the multiplication and the squaring operations based on our observation.