The AlSi20/8009 aluminum alloy was heated to high temperatures near the melting point and cooled to investigate the effect of external Si addition on the phase evolution of Al12(Fe,V)3 Si dispersion. Differential scan...The AlSi20/8009 aluminum alloy was heated to high temperatures near the melting point and cooled to investigate the effect of external Si addition on the phase evolution of Al12(Fe,V)3 Si dispersion. Differential scanning calorimeter, scanning electron microscope, energy dispersive spectrometer and X-ray diffractometer were employed.The results showed that Al12(Fe,V)3 Si and Si phases evolved into a needle-like Al4.5 Fe Si phase and a nano-sized V-rich phase during holding the alloy at 580-600℃. With increasing holding temperature to 620-640℃, Al4.5 Fe Si and nano-sized V-rich phases evolved reversibly into Al12(Fe,V)3 Si and Si phases, of which Al12(Fe,V)3 Si occupied a coarse and hexagonal morphology. During the alloy(after holding at 640 ℃) furnace cooling to 570 ℃ or lower, Si and Al12(Fe,V)3 Si phases evolved into strip-like Al4.5 Fe Si and the V-rich phases, which is a novel formation route for Al4.5 Fe Si phase different from Al-Fe-Si ternary system.展开更多
基金Project(CX20190310)supported by the Hunan Provincial Innovation Foundation for Postgraduate,ChinaProject(51574118)supported by the National Natural Science Foundation of China+1 种基金Project(2016GK4056)supported by Key Technologies R&D in Strategic Emerging Industries and Transformation in High-tech Achievements Program of Hunan Province,ChinaProject(2018GK5068)supported by Innovation and Entrepreneurship Technology Investment Project of Hunan Province,China。
文摘The AlSi20/8009 aluminum alloy was heated to high temperatures near the melting point and cooled to investigate the effect of external Si addition on the phase evolution of Al12(Fe,V)3 Si dispersion. Differential scanning calorimeter, scanning electron microscope, energy dispersive spectrometer and X-ray diffractometer were employed.The results showed that Al12(Fe,V)3 Si and Si phases evolved into a needle-like Al4.5 Fe Si phase and a nano-sized V-rich phase during holding the alloy at 580-600℃. With increasing holding temperature to 620-640℃, Al4.5 Fe Si and nano-sized V-rich phases evolved reversibly into Al12(Fe,V)3 Si and Si phases, of which Al12(Fe,V)3 Si occupied a coarse and hexagonal morphology. During the alloy(after holding at 640 ℃) furnace cooling to 570 ℃ or lower, Si and Al12(Fe,V)3 Si phases evolved into strip-like Al4.5 Fe Si and the V-rich phases, which is a novel formation route for Al4.5 Fe Si phase different from Al-Fe-Si ternary system.