This work presents a multi-criteria analysis of the MAC (media access control) layer misbehavior of the IEEE (Institute of Electrical and Electronics Engineers) 802.11 standard, whose principle is to cheat at the ...This work presents a multi-criteria analysis of the MAC (media access control) layer misbehavior of the IEEE (Institute of Electrical and Electronics Engineers) 802.11 standard, whose principle is to cheat at the protocol to increase the transmission rate by greedy nodes at the expense of the other honest nodes. In fact, IEEE 802.11 forces nodes for access to the channel to wait for a back off interval, randomly selected from a specified range, before initiating a transmission. Greedy nodes may wait for smaller back-off intervals than honest nodes, and then obtaining an unfair assignment. In the first of our works a state of art on the research on IEEE 802.11 MAC layer misbehavior are presented. Then the impact of this misbehavior at the reception is given, and we will generalize this impact on a large scale. An analysis of the correlation between the throughput and the inter-packets time is given. Afterwards, we will define a new metric for measuring the performance and capability of the network.展开更多
As one of the fastest growing wireless access technologies, wireless LANs must evolve to support adequate degrees of service differentiation. Unfortunately, current WLAN standards like IEEE 802.11 Distributed Coordina...As one of the fastest growing wireless access technologies, wireless LANs must evolve to support adequate degrees of service differentiation. Unfortunately, current WLAN standards like IEEE 802.11 Distributed Coordination Function (DCF) lack this ability. Work is in progress to define an enhanced version capable of supporting QoS for multimedia traffic at the MAC layer. In this paper, we aim at gaining insight into three mechanisms to differentiate among traffic categories, i.e., differentiating the minimum contention window size, the Inter-Frame Spacing (IFS), and the length of the packet payload according to the priority of different traffic categories. We propose an analysis model to compute the throughput and packet transmission delays. In addition, we derive approximations to obtain simpler but more meaningful relationships among different parameters. Comparisons with discrete-event simulation results show that good accuracy of performance evaluation can be achieved by using the proposed analysis model.展开更多
文摘This work presents a multi-criteria analysis of the MAC (media access control) layer misbehavior of the IEEE (Institute of Electrical and Electronics Engineers) 802.11 standard, whose principle is to cheat at the protocol to increase the transmission rate by greedy nodes at the expense of the other honest nodes. In fact, IEEE 802.11 forces nodes for access to the channel to wait for a back off interval, randomly selected from a specified range, before initiating a transmission. Greedy nodes may wait for smaller back-off intervals than honest nodes, and then obtaining an unfair assignment. In the first of our works a state of art on the research on IEEE 802.11 MAC layer misbehavior are presented. Then the impact of this misbehavior at the reception is given, and we will generalize this impact on a large scale. An analysis of the correlation between the throughput and the inter-packets time is given. Afterwards, we will define a new metric for measuring the performance and capability of the network.
基金Supported in part by the National Natural Science Foundation of China (Grant No. 60572144)the Natural Science Foundation of Shaanxi Prov-ince (Grant No. 2005F27)+1 种基金the Chinese Government Program for New Century Excellent Talents in University (Grant No. NCET-06-0876)the Scientific Research Foundation for the Returned Overseas Chinese Scholars, and the Youth Science and Technology Innovation Foundation of NPU (Grant No. W016207)
文摘As one of the fastest growing wireless access technologies, wireless LANs must evolve to support adequate degrees of service differentiation. Unfortunately, current WLAN standards like IEEE 802.11 Distributed Coordination Function (DCF) lack this ability. Work is in progress to define an enhanced version capable of supporting QoS for multimedia traffic at the MAC layer. In this paper, we aim at gaining insight into three mechanisms to differentiate among traffic categories, i.e., differentiating the minimum contention window size, the Inter-Frame Spacing (IFS), and the length of the packet payload according to the priority of different traffic categories. We propose an analysis model to compute the throughput and packet transmission delays. In addition, we derive approximations to obtain simpler but more meaningful relationships among different parameters. Comparisons with discrete-event simulation results show that good accuracy of performance evaluation can be achieved by using the proposed analysis model.