Mitogen-activated protein kinases (MAPKs) are important components in signal transduction modules which play crucial roles in regulation of many biological processes in plants. Although genome-wide analysis of MAPK an...Mitogen-activated protein kinases (MAPKs) are important components in signal transduction modules which play crucial roles in regulation of many biological processes in plants. Although genome-wide analysis of MAPK and MAPKK family has been carried out in poplar species, few data about the biological function analysis of this gene family are available to date. In this study, a group C MAPK gene 84KMPK14 was cloned from hybrid poplar (Populus alba × P. glandulosa cv. “84K”). It contained a typical protein kinase domain, a conserved TEY-motif and an atypical conserved common docking (CD) domain. Sequence alignment revealed that 84KMPK14 was the most homologous to Populus trichocarpa PtMPK14. Expression analysis indicated that the transcript of 84KMPK14 in roots and young leaves was higher than that in other tissues. The expression of 84KMPK14 was down-regulated by low or high temperature and was induced by H2O2 significantly. It was suppressed by drought and salinity stresses slightly one hour after treatment and then increased quickly three hours after treatment. These results indicated that 84KMPK14 may be involved in environmental stresses, which provides basis for further characterization of the physiological analysis on this gene.展开更多
【目的】克隆84K杨水杨酸结合蛋白2(Salicylic acid-binding protein 2,SABP2)基因并预测其功能。【方法】以生长至5片小叶的84K杨组培苗为材料,提取其叶和茎的总RNA。根据毛果杨SABP2基因(GenBank序列号:XM_002310718.2)的完整CDs序列...【目的】克隆84K杨水杨酸结合蛋白2(Salicylic acid-binding protein 2,SABP2)基因并预测其功能。【方法】以生长至5片小叶的84K杨组培苗为材料,提取其叶和茎的总RNA。根据毛果杨SABP2基因(GenBank序列号:XM_002310718.2)的完整CDs序列,设计84K杨SABP2基因的引物,采用RT-PCR技术扩增84K杨SABP2基因全长,然后连接到pGM-T克隆载体,转化大肠杆菌TOP10感受态细胞,对84K杨SABP2基因进行克隆,获得该基因的全长序列。通过各种在线软件对84K杨SABP2基因及其编码的蛋白质进行生物信息学分析。【结果】84K杨基因的cDNA序列全长822bp,开放阅读框789bp,编码263个氨基酸。生物信息学分析表明,84K杨SABP2与毛白杨SABP2(GenBank序列号:JQ086570.1)的同源性最高,达98%;84K杨SABP2基因位于微体中;SABP2蛋白有11个蛋白质结合位点,属于α/β折叠水解酶家庭成员中的酯酶,为亲水性蛋白。【结论】成功克隆了84K杨的SABP2基因,其功能与前人对草本植物中SABP2部分功能的研究结果一致。展开更多
OsNHX1 gene (Na+/H+ antiporter gene of Oryza sativa L.) was introduced into Poplar 84K with Agrobacte- rium tumefaciens-mediated transformation. PCR, Southern and Northern blot analysis showed that OsNHX1 gene was inc...OsNHX1 gene (Na+/H+ antiporter gene of Oryza sativa L.) was introduced into Poplar 84K with Agrobacte- rium tumefaciens-mediated transformation. PCR, Southern and Northern blot analysis showed that OsNHX1 gene was incorporated successfully into the genome of Poplar 84K and expressed in these transgenic plants. Salt tolerance test showed that three lines of transgenic plants grew normally in the presence of 200 mmol/L NaCl, while the Na+ content in the leaves of the transgenic plants grown at 200 mmol/L NaCl was significantly higher than that in plants grown at 0 mmol/L NaCl. The osmotic potential in the transgenic plants with high salinity treatment was lower than that of control plants. Our results demonstrate the potential use of these transgenic plants for agricultural use in saline soils.展开更多
文摘Mitogen-activated protein kinases (MAPKs) are important components in signal transduction modules which play crucial roles in regulation of many biological processes in plants. Although genome-wide analysis of MAPK and MAPKK family has been carried out in poplar species, few data about the biological function analysis of this gene family are available to date. In this study, a group C MAPK gene 84KMPK14 was cloned from hybrid poplar (Populus alba × P. glandulosa cv. “84K”). It contained a typical protein kinase domain, a conserved TEY-motif and an atypical conserved common docking (CD) domain. Sequence alignment revealed that 84KMPK14 was the most homologous to Populus trichocarpa PtMPK14. Expression analysis indicated that the transcript of 84KMPK14 in roots and young leaves was higher than that in other tissues. The expression of 84KMPK14 was down-regulated by low or high temperature and was induced by H2O2 significantly. It was suppressed by drought and salinity stresses slightly one hour after treatment and then increased quickly three hours after treatment. These results indicated that 84KMPK14 may be involved in environmental stresses, which provides basis for further characterization of the physiological analysis on this gene.
文摘【目的】克隆84K杨水杨酸结合蛋白2(Salicylic acid-binding protein 2,SABP2)基因并预测其功能。【方法】以生长至5片小叶的84K杨组培苗为材料,提取其叶和茎的总RNA。根据毛果杨SABP2基因(GenBank序列号:XM_002310718.2)的完整CDs序列,设计84K杨SABP2基因的引物,采用RT-PCR技术扩增84K杨SABP2基因全长,然后连接到pGM-T克隆载体,转化大肠杆菌TOP10感受态细胞,对84K杨SABP2基因进行克隆,获得该基因的全长序列。通过各种在线软件对84K杨SABP2基因及其编码的蛋白质进行生物信息学分析。【结果】84K杨基因的cDNA序列全长822bp,开放阅读框789bp,编码263个氨基酸。生物信息学分析表明,84K杨SABP2与毛白杨SABP2(GenBank序列号:JQ086570.1)的同源性最高,达98%;84K杨SABP2基因位于微体中;SABP2蛋白有11个蛋白质结合位点,属于α/β折叠水解酶家庭成员中的酯酶,为亲水性蛋白。【结论】成功克隆了84K杨的SABP2基因,其功能与前人对草本植物中SABP2部分功能的研究结果一致。
基金This work was supported by the National Basic Research Program of China(Grant Nos.G1999011704 and 2003CB114307).
文摘OsNHX1 gene (Na+/H+ antiporter gene of Oryza sativa L.) was introduced into Poplar 84K with Agrobacte- rium tumefaciens-mediated transformation. PCR, Southern and Northern blot analysis showed that OsNHX1 gene was incorporated successfully into the genome of Poplar 84K and expressed in these transgenic plants. Salt tolerance test showed that three lines of transgenic plants grew normally in the presence of 200 mmol/L NaCl, while the Na+ content in the leaves of the transgenic plants grown at 200 mmol/L NaCl was significantly higher than that in plants grown at 0 mmol/L NaCl. The osmotic potential in the transgenic plants with high salinity treatment was lower than that of control plants. Our results demonstrate the potential use of these transgenic plants for agricultural use in saline soils.