While finite volume methodologies (FVM) have predominated in fluid flow computations, many flow problems, including groundwater models, would benefit from the use of boundary methods, such as the Complex Variable Boun...While finite volume methodologies (FVM) have predominated in fluid flow computations, many flow problems, including groundwater models, would benefit from the use of boundary methods, such as the Complex Variable Boundary Element Method (CVBEM). However, to date, there has been no reporting of a comparison of computational results between the FVM and the CVBEM in the assessment of flow field characteristics. In this work, the CVBEM is used to develop a flow field vector outcome of ideal fluid flow in a 90-degree bend which is then compared to the computational results from a finite volume model of the same situation. The focus of the modelling comparison in the current work is flow field trajectory vectors of the fluid flow, with respect to vector magnitude and direction. Such a comparison is necessary to validate the development of flow field vectors from the CVBEM and is of interest to many engineering flow problems, specifically groundwater modelling. Comparison of the CVBEM and FVM flow field trajectory vectors for the target problem of ideal flow in a 90-degree bend shows good agreement between the considered methodologies.展开更多
Numerical simulations of evolution characteristics of slug flow across a 90°pipe bend have been carried out to study the fluid−structure interaction response induced by internal slug flow.The two-phase flow patte...Numerical simulations of evolution characteristics of slug flow across a 90°pipe bend have been carried out to study the fluid−structure interaction response induced by internal slug flow.The two-phase flow patterns and turbulence were modelled by using the volume of fluid(VOF)model and the Realizable k−εturbulence model respectively.Firstly,validation of the CFD model was carried out and the desirable results were obtained.The different flow patterns and the time-average mean void fraction was coincident with the reported experimental data.Simulations of different cases of slug flow have been carried out to show the effects of superficial gas and liquid velocity on the evolution characteristics of slug flow.Then,a one-way coupled fluid-structure interaction framework was established to investigate the slug flow interaction with a 90°pipe bend under various superficial liquid and gas velocities.It was found that the maximum total deformation and equivalent stress increased with the increasing superficial gas velocity,while decreased with the increasing superficial liquid velocity.In addition,the total deformation and equivalent stress has obvious periodic fluctuation.Furthermore,the distribution position of maximum deformation and stress was related to the evolution of slug flow.With the increasing superficial gas velocity,the maximum total deformation was mainly located at the 90°pipe bend.But as the superficial liquid velocity increases,the maximum total deformation was mainly located in the horizontal pipe section.Consequently,the slug flow with higher superficial gas velocity will induce more serious cyclical impact on the 90°pipe bend.展开更多
Heat transfer and energy performance of Al_(2)O_(3)/water nanofluid in a 90°bend with circular cross-section are investigated in the range of Reynolds number(Re)from 5000 to 30000,particle volume concentration(Φ...Heat transfer and energy performance of Al_(2)O_(3)/water nanofluid in a 90°bend with circular cross-section are investigated in the range of Reynolds number(Re)from 5000 to 30000,particle volume concentration(Φ)from 0.005%to 4%,Schmidt number(Sc)from 9870 to 296100,Dean number(De)from 6636 to 14847.The momentum and energy equations of nanofluid together with the dynamic equation for nanoparticles are solved numerically with the particle convection,diffusion,coagulation and breakage taken into consideration.Some results are validated by comparing with the available experimental or numerical results.The effect of Re,Φ,Sc and De on the friction factor and heat transfer of Al_(2)O_(3)/water nanofluidis discussed.The results showed that the particle number decreases along the pipeline.Increasing De,Sc leads to a decrease and increase ofΦ,respectively.The mean particle diameter and particle polydispersity increase with increasing Debut with decreasing Sc.The friction factor increases with increasingΦ,Sc De and Pr but with decreasing Sc.The ratio of energy performance evaluation criterion(PEC)for the Al_(2)O_(3)/water nanofluid to the base fluid increases with increasing Re,Φand De,but with decreasing Sc.Finally,the expression of ratio of energy PEC for the nanofluid to the base fluid as a function of Re,Φ,Sc and De is derived.展开更多
文摘While finite volume methodologies (FVM) have predominated in fluid flow computations, many flow problems, including groundwater models, would benefit from the use of boundary methods, such as the Complex Variable Boundary Element Method (CVBEM). However, to date, there has been no reporting of a comparison of computational results between the FVM and the CVBEM in the assessment of flow field characteristics. In this work, the CVBEM is used to develop a flow field vector outcome of ideal fluid flow in a 90-degree bend which is then compared to the computational results from a finite volume model of the same situation. The focus of the modelling comparison in the current work is flow field trajectory vectors of the fluid flow, with respect to vector magnitude and direction. Such a comparison is necessary to validate the development of flow field vectors from the CVBEM and is of interest to many engineering flow problems, specifically groundwater modelling. Comparison of the CVBEM and FVM flow field trajectory vectors for the target problem of ideal flow in a 90-degree bend shows good agreement between the considered methodologies.
基金sponsored by the National Natural Science Foundation of China(Grant No.51779143)the Oceanic Interdisciplinary Program of Shanghai Jiao Tong University(Grant No.SL2020ZD101)the Cultivation of Scientific Research Ability of Young Talents of Shanghai Jiao Tong University(Grant No.19X100040072).
文摘Numerical simulations of evolution characteristics of slug flow across a 90°pipe bend have been carried out to study the fluid−structure interaction response induced by internal slug flow.The two-phase flow patterns and turbulence were modelled by using the volume of fluid(VOF)model and the Realizable k−εturbulence model respectively.Firstly,validation of the CFD model was carried out and the desirable results were obtained.The different flow patterns and the time-average mean void fraction was coincident with the reported experimental data.Simulations of different cases of slug flow have been carried out to show the effects of superficial gas and liquid velocity on the evolution characteristics of slug flow.Then,a one-way coupled fluid-structure interaction framework was established to investigate the slug flow interaction with a 90°pipe bend under various superficial liquid and gas velocities.It was found that the maximum total deformation and equivalent stress increased with the increasing superficial gas velocity,while decreased with the increasing superficial liquid velocity.In addition,the total deformation and equivalent stress has obvious periodic fluctuation.Furthermore,the distribution position of maximum deformation and stress was related to the evolution of slug flow.With the increasing superficial gas velocity,the maximum total deformation was mainly located at the 90°pipe bend.But as the superficial liquid velocity increases,the maximum total deformation was mainly located in the horizontal pipe section.Consequently,the slug flow with higher superficial gas velocity will induce more serious cyclical impact on the 90°pipe bend.
基金Projects supported by the National Natural Science Foundation of China(Grant No.91852102).
文摘Heat transfer and energy performance of Al_(2)O_(3)/water nanofluid in a 90°bend with circular cross-section are investigated in the range of Reynolds number(Re)from 5000 to 30000,particle volume concentration(Φ)from 0.005%to 4%,Schmidt number(Sc)from 9870 to 296100,Dean number(De)from 6636 to 14847.The momentum and energy equations of nanofluid together with the dynamic equation for nanoparticles are solved numerically with the particle convection,diffusion,coagulation and breakage taken into consideration.Some results are validated by comparing with the available experimental or numerical results.The effect of Re,Φ,Sc and De on the friction factor and heat transfer of Al_(2)O_(3)/water nanofluidis discussed.The results showed that the particle number decreases along the pipeline.Increasing De,Sc leads to a decrease and increase ofΦ,respectively.The mean particle diameter and particle polydispersity increase with increasing Debut with decreasing Sc.The friction factor increases with increasingΦ,Sc De and Pr but with decreasing Sc.The ratio of energy performance evaluation criterion(PEC)for the Al_(2)O_(3)/water nanofluid to the base fluid increases with increasing Re,Φand De,but with decreasing Sc.Finally,the expression of ratio of energy PEC for the nanofluid to the base fluid as a function of Re,Φ,Sc and De is derived.