Various ion sources are key components to prepare functional coatings,such as diamond-like carbon(DLC)films.In this article,we present our trying of surface modification on basis of Si-incorporation diamond-like carbo...Various ion sources are key components to prepare functional coatings,such as diamond-like carbon(DLC)films.In this article,we present our trying of surface modification on basis of Si-incorporation diamond-like carbon(Si-DLC)produced by a magnetic field enhanced radio frequency ion source,which is established to get high density plasma with the help of magnetic field.Under proper deposition process,a contact angle of 111°hydrophobic surface was achieved without any surface patterning,where nanostructure SiC grains appeared within the amorphous microstructure.The surface property was influenced by ion flow parameters as well as the resultant surface microstructure.The magnetic field enhanced radio frequency ion source developed in this paper was useful for protective film applications.展开更多
A radio-frequency (rf) plasma sheath model in an oblique magnetic field is established and the energy distribution of ions (IED) incident on the rf sheath biased electrodes is numerically investigated. The simulat...A radio-frequency (rf) plasma sheath model in an oblique magnetic field is established and the energy distribution of ions (IED) incident on the rf sheath biased electrodes is numerically investigated. The simulation results reveal that the external magnetic field can have a decisive impact on the ion flux and energy distribution of the sheath. The ion energy can be transferred between the perpendicular and parallel components under the action of a magnetic field.展开更多
Metallic copper(Cu) films were deposited on a Si (100) substrate by unbalanced magnetron sputtering enhanced by radio-frequency plasma and external magnetic field confinement. The morphology and structure of the f...Metallic copper(Cu) films were deposited on a Si (100) substrate by unbalanced magnetron sputtering enhanced by radio-frequency plasma and external magnetic field confinement. The morphology and structure of the films were examined by scanning electron microscopy (SEM), atomic force microscope (AFM) and X-ray diffraction (XRD). The surface average roughness of the deposited Cu films was characterized by AFM data and resistivity was measured by a four-point probe. The results show that the Cu films deposited with radio-frequency discharge enhanced ionization and external magnetic field confinement have a smooth surface, low surface roughness and low resistivity. The reasons may be that the radio-frequency discharge and external magnetic field enhance the plasma density, which further improves the ion bombardment effect under the same bias voltage conditions. Ion bombardment can obviously influence the growth features and characteristics of the deposited Cu films.展开更多
High-sensitivity radio-frequency optically pumped magnetometers (RF-OPMs), working without cryogenic condition, play a critical role in magnetic field imaging(MFI) at low frequencies(e.g., 100 Hz to 1 MHz). We introdu...High-sensitivity radio-frequency optically pumped magnetometers (RF-OPMs), working without cryogenic condition, play a critical role in magnetic field imaging(MFI) at low frequencies(e.g., 100 Hz to 1 MHz). We introduce the principle of operation and recent developments of RF-OPMs and focus on reviewing the MFI applications in magnetic induction tomography, ultralow-field magnetic resonance imaging, and magnetic particle imaging. For the applications of RF-OPMs, ranging from industrial monitoring to medical imaging and security screening, the unshielded and portable RF-OPMs(and RF-OPM array)techniques are still under the further development for detecting and scanning over the target object for accomplishing the final three-dimensional imaging, and thus extremely require the abilities of active compensation of the ambient magnetic field and sensor miniaturization in the future.展开更多
Using very recently published X-ray and low frequency radio data we have calculated thelower limit of the magnetic field and several other related quantities for 25 clusters of galaxies(which are classified into '...Using very recently published X-ray and low frequency radio data we have calculated thelower limit of the magnetic field and several other related quantities for 25 clusters of galaxies(which are classified into 'normal', distant and steep spectrum clusters) and 12 radiogalaxies. Our main results are as follows: (1)The magnetic field in the extended lobes of radio galaxies is larger than 10-6 G.Thus radio galaxies, whether they belong to clusters or not, emit few X-rays through theinverse Compton effect. (2)The low frequency radio emission from clusters can be divided into two components:one or several radio galaxies, and an extended halo where the magnetic field is about 10-8G, and where inverse Compton X-rays are most probably emitted. (3)Our sample of distant clusters is biased towards high radio luminosity and givesresults comparable to those obtained for radio galaxies. This can naturally be explained bythe fact that the radio galaxy component daminates the radio emission. (4)In steep spectrum clusters, the equipartition magnetic field is the same as that in'normal' clusters, but the lower limit of the magnetic field has a rather high value andseems to increase with the spectral indcx. We explain this as follows: a high frequencyturnover can occur hi the weak intraculuster magnetic field; the extrapolation of the power lawelectron spectrum is then incorrect, and the magnetic field; the extrapolation of the power lawvalue.展开更多
文摘Various ion sources are key components to prepare functional coatings,such as diamond-like carbon(DLC)films.In this article,we present our trying of surface modification on basis of Si-incorporation diamond-like carbon(Si-DLC)produced by a magnetic field enhanced radio frequency ion source,which is established to get high density plasma with the help of magnetic field.Under proper deposition process,a contact angle of 111°hydrophobic surface was achieved without any surface patterning,where nanostructure SiC grains appeared within the amorphous microstructure.The surface property was influenced by ion flow parameters as well as the resultant surface microstructure.The magnetic field enhanced radio frequency ion source developed in this paper was useful for protective film applications.
基金supported by National Natural Science Foundation of China (No. 10605008)
文摘A radio-frequency (rf) plasma sheath model in an oblique magnetic field is established and the energy distribution of ions (IED) incident on the rf sheath biased electrodes is numerically investigated. The simulation results reveal that the external magnetic field can have a decisive impact on the ion flux and energy distribution of the sheath. The ion energy can be transferred between the perpendicular and parallel components under the action of a magnetic field.
基金National Natural Science Foundation of China(Nos.50277003,10505005)
文摘Metallic copper(Cu) films were deposited on a Si (100) substrate by unbalanced magnetron sputtering enhanced by radio-frequency plasma and external magnetic field confinement. The morphology and structure of the films were examined by scanning electron microscopy (SEM), atomic force microscope (AFM) and X-ray diffraction (XRD). The surface average roughness of the deposited Cu films was characterized by AFM data and resistivity was measured by a four-point probe. The results show that the Cu films deposited with radio-frequency discharge enhanced ionization and external magnetic field confinement have a smooth surface, low surface roughness and low resistivity. The reasons may be that the radio-frequency discharge and external magnetic field enhance the plasma density, which further improves the ion bombardment effect under the same bias voltage conditions. Ion bombardment can obviously influence the growth features and characteristics of the deposited Cu films.
基金supported by the National Natural Science Foundation of China (Nos.62375002,62071012,61571018,61531003,and 91436210)the National Science Fund for Distinguished Young Scholars of China (No.61225003)the National Hi-Tech Research and Development (863) Program。
文摘High-sensitivity radio-frequency optically pumped magnetometers (RF-OPMs), working without cryogenic condition, play a critical role in magnetic field imaging(MFI) at low frequencies(e.g., 100 Hz to 1 MHz). We introduce the principle of operation and recent developments of RF-OPMs and focus on reviewing the MFI applications in magnetic induction tomography, ultralow-field magnetic resonance imaging, and magnetic particle imaging. For the applications of RF-OPMs, ranging from industrial monitoring to medical imaging and security screening, the unshielded and portable RF-OPMs(and RF-OPM array)techniques are still under the further development for detecting and scanning over the target object for accomplishing the final three-dimensional imaging, and thus extremely require the abilities of active compensation of the ambient magnetic field and sensor miniaturization in the future.
文摘Using very recently published X-ray and low frequency radio data we have calculated thelower limit of the magnetic field and several other related quantities for 25 clusters of galaxies(which are classified into 'normal', distant and steep spectrum clusters) and 12 radiogalaxies. Our main results are as follows: (1)The magnetic field in the extended lobes of radio galaxies is larger than 10-6 G.Thus radio galaxies, whether they belong to clusters or not, emit few X-rays through theinverse Compton effect. (2)The low frequency radio emission from clusters can be divided into two components:one or several radio galaxies, and an extended halo where the magnetic field is about 10-8G, and where inverse Compton X-rays are most probably emitted. (3)Our sample of distant clusters is biased towards high radio luminosity and givesresults comparable to those obtained for radio galaxies. This can naturally be explained bythe fact that the radio galaxy component daminates the radio emission. (4)In steep spectrum clusters, the equipartition magnetic field is the same as that in'normal' clusters, but the lower limit of the magnetic field has a rather high value andseems to increase with the spectral indcx. We explain this as follows: a high frequencyturnover can occur hi the weak intraculuster magnetic field; the extrapolation of the power lawelectron spectrum is then incorrect, and the magnetic field; the extrapolation of the power lawvalue.